Objective: We propose a selection process to identify a small molecule inhibitor to treat NLRP3-associated sensory hearing loss.
Background: The NLRP3 inflammasome is an innate immune sensor and present in monocytes and macrophages. Once the inflammasome is activated, a cleavage cascade is initiated leading to the release of proinflammatory cytokines IL-1β and IL-18. The NLRP3 inflammasome has been implicated in many causes of hearing loss, including autoimmune disease, tumors, and chronic suppurative otitis media. Although the target has been identified, there is a lack of available therapeutics to treat NLRP3-associated hearing loss.
Methods: We created a target product profile with specific characteristics that are required for a compound to treat sensory hearing loss. We then looked at available small molecule NLRP3 inhibitors at different stages of development and selected compounds that fit that profile best. Those compounds were then tested for cell toxicity in MTT assays to determine the dosage to be used for efficacy testing. We tested efficacy of a known NLRP3 inhibitor, MCC950, in a proof-of-concept screen on reporter monocytes.
Results: Six compounds were selected that fulfilled our selection criteria for further testing. We found the maximum tolerated dose for each of those compounds that will be used for further efficacy testing. The proof-of-concept efficacy screen on reporter monocytes confirmed that those cells can be used for further efficacy testing.
Conclusion: Our selection process and preliminary results provide a promising concept to develop small molecule NLRP3 inhibitors to treat sensory hearing loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MAO.0000000000004321 | DOI Listing |
J Acoust Soc Am
January 2025
Department of Apparel and Space Design, Kyoto Women's University, Kyoto, Kyoto 605-8501, Japan.
Ever since de Saussure [Course in General Lingustics (Columbia University Press, 1916)], theorists of language have assumed that the relation between form and meaning of words is arbitrary. However, recently, a body of empirical research has established that language is embodied and contains iconicity. Sound symbolism, an intrinsic link language users perceive between word sound and properties of referents, is a representative example of iconicity in language and has offered profound insights into theories of language pertaining to language processing, language acquisition, and evolution.
View Article and Find Full Text PDFeNeuro
January 2025
Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Technologiepark 216, 9052 Zwijnaarde, Belgium
Speech intelligibility declines with age and sensorineural hearing damage (SNHL). However, it remains unclear whether cochlear synaptopathy (CS), a recently discovered form of SNHL, significantly contributes to this issue. CS refers to damaged auditory-nerve synapses that innervate the inner hair cells and there is currently no go-to diagnostic test available.
View Article and Find Full Text PDFJ Neurosci
January 2025
Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, 14642, USA;
The inner ear houses both hearing and balance sensory modalities. The hearing and balance organs consist of similar cell types, including sensory hair cells and associated supporting cells. Previously we showed that is required for maintaining supporting cell survival during cochlear maturation.
View Article and Find Full Text PDFExp Gerontol
January 2025
Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China; NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, China. Electronic address:
Background: Age-related hearing loss (ARHL) is a common sensory disorder with significant public health implications. However, few effective treatment options are available. Mendelian randomization (MR) has been used to repurpose existing drugs and identify new therapeutic targets.
View Article and Find Full Text PDFJ Otol
October 2024
Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
The inner ear sensory epithelium consists of two major types of cells: hair cells (HCs) and supporting cells (SCs). Critical functions of HCs in the perception of mechanical stimulation and mechanosensory transduction have long been elucidated. SCs are indispensable components of the sensory epithelia, and they maintain the structural integrity and ionic environment of the inner ear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!