AI Article Synopsis

  • The study investigates the unclear pathophysiology of atrial fibrillation (AF), focusing on how scar tissue and conduction velocity (CV) affect electrical wavefronts in sinus rhythm (SR) and AF.
  • Researchers analyzed data from 60 patients, finding that local activation times and voltage levels correlate, with enhanced CV heterogeneity often found in areas of low voltage.
  • The findings suggest that CV dynamics influenced by scar tissue lead to varying wavefront propagation in SR and increased rotational activity during AF, highlighting potential new targets for ablation treatment.

Article Abstract

Aims: Pathophysiology of atrial fibrillation (AF) remains unclear. Interactions between scar and conduction velocity (CV) and their impact on wavefront propagation in sinus rhythm (SR) and rotational activity burden in AF were evaluated.

Methods And Results: Local activation times (LATs) and voltage data were obtained from patients undergoing ablation for persistent AF. Omnipolar voltage (OV) and bipolar voltage (BV) data were obtained during AF and SR at pacing intervals of 600 and 250 ms. Local activation times were used to determine CV dynamics and their relationship to the underlying voltage and pivot points in SR. Computational modelling studies were performed to evaluate the impact of CVs and fibrosis on rotational activity burden in AF. Data from 60 patients with a total of 2 768 400 LAT and voltage points were analysed (46 140 ± 5689 points/patient). Voltage determined CV dynamics. Enhanced CV heterogeneity sites were predominantly mapped to low-voltage zones (LVZs) (0.2-0.49 mV) (128/168, 76.2%) rather than LVZs (<0.2 mV) and frequently co-located to pivot points (151/168, 89.9%). Atrial fibrillation OV maps correlated better with SR BV 250 ms than 600 ms maps, thereby representing fixed and functional remodelling. Sinus rhythm maps at 250 ms compared with 600 ms harboured a greater number of pivot points. Increased CV slowing and functional remodelling on computational models resulted in a greater rotational activity burden.

Conclusion: Conduction velocity dynamics are impacted by the degree of scar. Conduction velocity heterogeneity and functional remodelling impacts wavefront propagation in SR and rotational activity burden in AF. This study provides insight into the pathophysiology of AF and identifies potential novel ablation targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481322PMC
http://dx.doi.org/10.1093/europace/euae239DOI Listing

Publication Analysis

Top Keywords

rotational activity
12
conduction velocity
8
wavefront propagation
8
atrial fibrillation
8
activity burden
8
local activation
8
activation times
8
voltage data
8
data patients
8
voltage
6

Similar Publications

Objectives: To form a unique body weight support-Tai Chi Yunshou (BWS-TCY) training method, apply it to the treatment of upper limb dysfunction after stroke, and provide a new safe and effective treatment method for the clinic.

Methods: A total of 93 subjects were recruited and randomly divided into conventional rehabilitation treatment (CRT) group, BWS-TCY group and traditional robot-assisted training (RAT) group in equal proportions. Subjects in the CRT group received 60 minutes of CRT daily.

View Article and Find Full Text PDF

Objective: Previous research has established the effectiveness of active pretensioning seatbelts (APS), also termed motorized pretensioning seatbelts, in mitigating forward leaning and out-of-position displacement during pre-crash scenarios. In the Chinese market, APS trigger times are typically set later than those reported in the literature. This study investigates the real-world performance of APS systems with delayed trigger times under emergency braking conditions.

View Article and Find Full Text PDF

Growing evidence suggests that ribosomes selectively regulate translation of specific mRNA subsets. Here, quantitative proteomics and cryoelectron microscopy demonstrate that poxvirus infection does not alter ribosomal subunit protein (RP) composition but skews 40S rotation states and displaces the 40S head domain. Genetic knockout screens employing metabolic assays and a dual-reporter virus further identified two RPs that selectively regulate non-canonical translation of late poxvirus mRNAs, which contain unusual 5' poly(A) leaders: receptor of activated C kinase 1 (RACK1) and RPLP2.

View Article and Find Full Text PDF

Background: Epidemiological studies report an elevated risk of neurodegenerative disorders, particularly Parkinson's disease (PD), in patients with type 2 diabetes mellitus (T2DM) that is mitigated in those prescribed incretin mimetics or dipeptidyl peptidase 4 inhibitors (DPP-4Is). Incretin mimetic repurposing appears promising in human PD and Alzheimer's disease (AD) clinical trials. DPP-4Is are yet to be evaluated in PD or AD human studies.

View Article and Find Full Text PDF

[Outcomes of Retrograde Femoral Nail Osteosynthesis of Intraarticular Fractures of the Distal Femur].

Acta Chir Orthop Traumatol Cech

January 2025

Klinika ortopedie a traumatologie pohybového ústrojí Fakultní nemocnice Plzeň.

Purpose Of The Study: Intraarticular fractures of the distal femur rank among the most severe musculoskeletal injuries. Various treatment options, such as plate osteosynthesis or retrograde nailing, can be employed. This study aims to evaluate the clinical outcomes and complications of intraarticular distal femoral fractures treated with retrograde femoral nail, with particular emphasis on C3 fractures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!