Video anomaly detection (VAD) plays a crucial role in intelligent surveillance. However, an essential type of anomaly named scene-dependent anomaly is overlooked. Moreover, the task of video anomaly anticipation (VAA) also deserves attention. To fill these gaps, we build a comprehensive dataset named NWPU Campus, which is the largest semi-supervised VAD dataset and the first dataset for scene-dependent VAD and VAA. Meanwhile, we introduce a novel forward-backward framework for scene-dependent VAD and VAA, in which the forward network individually solves the VAD and jointly solves the VAA with the backward network. Particularly, we propose a scene-dependent generative model in latent space for the forward and backward networks. First, we propose a hierarchical variational auto-encoder to extract scene-generic features. Next, we design a score-based diffusion model in latent space to refine these features more compact for the task and generate scene-dependent features with a scene information auto-encoder, modeling the relationships between video events and scenes. Finally, we develop a temporal loss from key frames to constrain the motion consistency of video clips. Extensive experiments demonstrate that our method can handle both scene-dependent anomaly detection and anticipation well, achieving state-of-the-art performance on ShanghaiTech, CUHK Avenue, and the proposed NWPU Campus datasets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2024.3461718 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!