A tutorial on physiologically based pharmacokinetic approaches in lactation research.

CPT Pharmacometrics Syst Pharmacol

Certara Predictive Technologies Division, Sheffield, UK.

Published: November 2024

In breastfeeding mothers, managing medical conditions presents unique challenges, particularly concerning medication use and breastfeeding practices. The transfer of drugs into breast milk and subsequent exposure to nursing infants raises important considerations for drug safety and efficacy. Modeling approaches are increasingly employed to predict infant exposure levels, crucial for assessing drug safety during breastfeeding. Physiologically-based pharmacokinetic (PBPK) modeling provides a valuable tool for predicting drug exposure in lactating individuals and their infants. This tutorial offers an overview of PBPK modeling in lactation research, covering key concepts, prediction approaches, and best practices for model development and application. We delve into milk composition dynamics and its influence on drug transfer into breast milk, addressing modeling considerations, knowledge gaps, and future research directions. Practical examples and case studies illustrate PBPK modeling application in lactation studies. We demonstrate how prediction algorithms for Milk-to-Plasma (M/P) ratios within a PBPK framework can support scenarios lacking clinical lactation data or extend the utility of available lactation clinical data to support further untested clinical scenarios. This tutorial aims to assist researchers and clinicians in understanding and applying PBPK modeling to understand and support clinical scenarios in breastfeeding mothers. Advances in PBPK modeling techniques, along with ongoing research on lactation physiology and drug disposition, promise further insights into drug transfer during lactation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578141PMC
http://dx.doi.org/10.1002/psp4.13232DOI Listing

Publication Analysis

Top Keywords

pbpk modeling
20
breastfeeding mothers
8
breast milk
8
drug safety
8
drug transfer
8
clinical scenarios
8
lactation
7
modeling
7
drug
6
pbpk
6

Similar Publications

Physiologically based Pharmacokinetic/Pharmacodynamic Modeling (PBPK/PD) of Famotidine in Pregnancy.

J Clin Pharmacol

January 2025

Bayer HealthCare SAS, Lille, France, on behalf of:, Model-Informed Drug Development, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany.

Famotidine, a H-receptor antagonist, is commonly used to treat heartburn and gastroesophageal reflux disease during pregnancy. However, information on the pharmacokinetics (PK) of famotidine in pregnant patients is limited since pregnant patients are usually excluded from clinical trials. This study aimed to develop and evaluate a physiologically based pharmacokinetic (PBPK) model for famotidine in non-pregnant and pregnant populations, and to combine it with a pharmacodynamic (PD) model to predict the effect of famotidine on intragastric pH.

View Article and Find Full Text PDF

Physiologically-based pharmacokinetic modeling to predict the exposure and provide dosage regimens of tacrolimus in pregnant women with infection disease.

Eur J Pharm Sci

January 2025

Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China. Electronic address:

Tacrolimus is extensively used for the prevention of graft rejection following solid organ transplantation in pregnant women. However, knowledge gaps in the dosage of tacrolimus for pregnant patients with different CYP3A5 genotypes and infection conditions have been identified. This study aimed to develop a pregnant physiologically based pharmacokinetic (PBPK) model to characterize the maternal and fetal pharmacokinetics of tacrolimus during pregnancy and explore and provide dosage adjustments.

View Article and Find Full Text PDF

Digital twins, driven by data and mathematical modelling, have emerged as powerful tools for simulating complex biological systems. In this work, we focus on modelling the clearance on a liver-on-chip as a digital twin that closely mimics the clearance functionality of the human liver. Our approach involves the creation of a compartmental physiological model of the liver using ordinary differential equations (ODEs) to estimate pharmacokinetic (PK) parameters related to on-chip liver clearance.

View Article and Find Full Text PDF

Arsenic accumulation and reproductive toxicity in freshwater snail (Pomacea canaliculata).

Ecotoxicol Environ Saf

January 2025

Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:

This study aimed to investigate the tissue-specific accumulation patterns of arsenic (As) and the potential toxicological effects of As on the oviposition of a globally distributed aquatic invertebrate, the apple snail (Pomacea canaliculata). An eight-compartment physiologically based pharmacokinetic (PBPK) model was utilized to simulate the distribution and depuration kinetics of arsenite and arsenate in the snails. Modeling and biotransformation suggested that intestine-stomach was the main uptake site for As and plays an important role in maintaining the balance of As species.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a major public health concern, which can cause serious outcomes. Low-dose methotrexate (MTX) is a cornerstone in RA treatment, but there is significant heterogeneity in clinical response. To evaluate underlying sources of pharmacokinetic variability and clinical response of MTX, a physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed using PK-sim and Mobi (version 11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!