Mutated KRAS proteins are frequently expressed in some of the most lethal human cancers and thus have been a target of intensive drug discovery efforts for decades. Lately, KRAS(G12C) switch-II pocket (SII-P)-targeting covalent small molecule inhibitors have finally reached clinical practice. Sotorasib (AMG-510) was the first FDA-approved covalent inhibitor to treat KRAS(G12C)-positive nonsmall cell lung cancer (NSCLC), followed soon by adagrasib (MRTX849). Both drugs target the GDP-bound state of KRAS(G12C), exploiting the strong nucleophilicity of acquired cysteine. Here, we evaluate the similarities and differences between sotorasib and adagrasib in their RAS SII-P binding by applying biochemical, cellular, and computational methods. Exact knowledge of SII-P engagement can enable targeting this site by reversible inhibitors for KRAS mutants beyond G12C. We show that adagrasib is strictly KRAS- but not KRAS(G12C)-specific due to its strong and unreplaceable interaction with H95. Unlike adagrasib, sotorasib is less dependent on H95 for its binding, making it a RAS isoform-agnostic compound, having a similar functionality also with NRAS and HRAS G12C mutants. Our results emphasize the accessibility of SII-P beyond oncogenic G12C and aid in understanding the molecular mechanism behind the clinically observed drug resistance, associated especially with secondary mutations on KRAS H95 and Y96.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschembio.4c00315DOI Listing

Publication Analysis

Top Keywords

sotorasib adagrasib
8
h95 y96
8
adagrasib
5
krasg12c biochemical
4
biochemical computational
4
computational characterization
4
sotorasib
4
characterization sotorasib
4
adagrasib binding
4
binding specificity
4

Similar Publications

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Introduction: Recent advances in the treatment of -mutant non-small cell lung cancer (NSCLC) have led to the development of KRAS inhibitors, such as sotorasib and adagrasib. However, resistance and disease progression remain significant challenges. In this study, we investigated the therapeutic potential of combining trastuzumab deruxtecan (T-DXd), an anti-HER2 antibody-drug conjugate, with sotorasib in -mutant NSCLC, while also evaluating HER2 expression in NSCLC samples.

View Article and Find Full Text PDF

Development of KRAS Inhibitors and Their Role for Metastatic Colorectal Cancer.

J Natl Compr Canc Netw

January 2025

1Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI.

Colorectal cancer (CRC) is a heterogeneous group of diseases comprising several molecular subtypes. Comprehensive DNA sequencing is now standard practice to identify these subtype. Until recently, KRAS mutation status in metastatic CRC was primarily used as a biomarker to predict resistance to EGFR inhibition.

View Article and Find Full Text PDF

KRAS inhibitors: resistance drivers and combinatorial strategies.

Trends Cancer

December 2024

Charité - Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:

In 1982, the RAS genes HRAS and KRAS were discovered as the first human cancer genes, with KRAS later identified as one of the most frequently mutated oncogenes. Yet, it took nearly 40 years to develop clinically effective inhibitors for RAS-mutant cancers. The discovery in 2013 by Shokat and colleagues of a druggable pocket in KRAS paved the way to FDA approval of the first covalently binding KRAS inhibitors, sotorasib and adagrasib, in 2021 and 2022, respectively.

View Article and Find Full Text PDF

WEE1 confers resistance to KRAS inhibitors in non-small cell lung cancer.

Cancer Lett

December 2024

Division of Collaborative Research and Developments, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan. Electronic address:

KRAS inhibitors sotorasib and adagrasib have been approved for the treatment of KRAS-mutant non-small cell lung cancer (NSCLC). However, the efficacy of single-agent treatments is limited, presumably due to multiple resistance mechanisms. To overcome these therapeutic limitations, combination strategies that potentiate the antitumor efficacy of KRAS inhibitors must be developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!