Mycoviruses with an unprecedented genome organization, featuring the RNA-directed RNA polymerase (RdRp) palm domain coding sequence being split into two distinct genome segments, have been found recently in a few fungi and oomycetes of different lineages and have been proposed to be named "splipalmiviruses". One of these, Oidiodendron maius splipalmivirus 1 (OmSPV1), has been detected in the ericoid mycorrhizal fungus Oidiodendron maius, and it has been proposed to be bisegmented. Here, we complete the genome sequence of this virus by describing a third RNA segment, which is 2000 nt long and whose terminal sequences are identical to those of the other two segments of OmSPV1. This segment contains a single open reading frame that codes for a protein with unknown function and has a low level of sequence identity (47%) to the putative protein encoded by the third segment of another splipalmivirus from Magnaporthe oryzae: Magnaporthe oryzae narnavirus virus 1 (MoNV1). Based on these features, we propose the RNA segment to be the third segment of the OmSPV1 genome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405419 | PMC |
http://dx.doi.org/10.1007/s00705-024-06126-z | DOI Listing |
Arch Virol
September 2024
Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy.
Mycoviruses with an unprecedented genome organization, featuring the RNA-directed RNA polymerase (RdRp) palm domain coding sequence being split into two distinct genome segments, have been found recently in a few fungi and oomycetes of different lineages and have been proposed to be named "splipalmiviruses". One of these, Oidiodendron maius splipalmivirus 1 (OmSPV1), has been detected in the ericoid mycorrhizal fungus Oidiodendron maius, and it has been proposed to be bisegmented. Here, we complete the genome sequence of this virus by describing a third RNA segment, which is 2000 nt long and whose terminal sequences are identical to those of the other two segments of OmSPV1.
View Article and Find Full Text PDFMycorrhiza
November 2023
Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, IPATEC (Universidad Nacional del Comahue-CONICET), San Carlos de Bariloche, Río Negro, Argentina.
Core Ericaceae produce delicate hair roots with inflated rhizodermal cells that host plethora of fungal symbionts. These poorly known mycobionts include various endophytes, parasites, saprobes, and the ericoid mycorrhizal (ErM) fungi (ErMF) that form the ErM symbiosis crucial for the fitness of their hosts. Using microscopy and high-throughput sequencing, we investigated their structural and molecular diversity in 14 different host × site combinations in Northern Bohemia (Central Europe) and Argentine Patagonia (South America).
View Article and Find Full Text PDFJ Agric Food Chem
October 2023
College of Forestry, Guangxi University, Nanning 530004, China.
To prevent the exploitation of wild agarwood, the development of artificial agarwood through fungal inoculation is a promising method, but finding species that produce efficient high-quality agarwood remains difficult. In this study, a fungal inducer was prepared using wild agarwood containing fungi and high-throughput sequencing was performed to determine its species makeup. Subsequently, it was used to inoculate (Lour.
View Article and Find Full Text PDFJ Fungi (Basel)
July 2023
Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603950 Nizhny Novgorod, Russia.
G.L. Barron is a recognized fungal species capable of forming ericoid mycorrhiza with various positive effects on host plants; therefore, newly found and previously uncharacterized strains may be valuable for heather plants' controlled mycorrhization.
View Article and Find Full Text PDFMycorrhizal helper bacteria (MHB) can promote mycorrhizal fungal colonization and form mycorrhizal symbiosis structures. To investigate the effect of interactions between mycorrhizal beneficial microorganisms on the growth of blueberry, 45 strains of bacteria isolated from the rhizosphere soil of were screened for potential MHB strains using the dry-plate confrontation assay and the bacterial extracellular metabolite promotion method. The results showed that the growth rate of mycelium of 143, an ericoid mycorrhizal fungal strain, was increased by 33.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!