The Potential of Natural Products in the Management of COVID-19.

Adv Exp Med Biol

Faculty of Pharmacy, Department of Clinical Pharmacy, Misr University for Science and Technology, Cairo, Egypt.

Published: September 2024

AI Article Synopsis

  • * Research indicates that previously abandoned drug candidates may be repurposed with thorough safety and efficacy studies, while many natural compounds demonstrate potential antiviral properties against coronaviruses, leveraging their ability to inhibit virus replication and block viral proteins.
  • * This review focuses on various natural compounds, including alkaloids and flavonoids, showcasing their effectiveness against the virus, and emphasizes the need for further research into these and other secondary metabolites for COVID-19 treatment.

Article Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the novel coronavirus that caused a life-threatening viral illness (COVID-19) at the end of 2019. Within a short period of time, this virus spread leading to tremendous loss of life and economic damage. Medications to treat this virus are not yet established, and the process of implementing new strategies for medications is time-consuming. Recent clinical studies revealed the abandonment of the most promising candidates, who later became potential leads. Only through comprehensive study for safety and efficacy the medications, which have already received approval, be repurposed for use in different therapeutic purposes. Natural sources are being used arbitrarily as antiviral drugs and immunity boosters because there are no clear therapies on the horizon. It has long been known that most natural compounds have strong antiviral properties including SARS-CoV-2. Natural remedies have been demonstrated to have inhibitory effects on MERS-CoV and SARS-CoV infections. The non-structural proteins of the virus, such as PLPRO, MPRO, and RdRp, as well as structural proteins like the spike (S) protein, have been demonstrated to have a substantial binding affinity and an inhibitory effect by a variety of natural products, according to in silico research. The virus also demonstrates to be a legitimate target for therapeutic development since it makes use of the host cell's transmembrane ACE2 receptor. In this chapter, we highlight on the potential of alkaloids, phenolic and polyphenolic compounds, flavonoids, terpenoids, cardiac glycosides, and natural products from marine sources against the human coronavirus via different mode of actions. Most of the studied metabolites act either by inhibiting virus replication or by blocking the active site of the protein of the virus either in silico or ex vivo. This review serves as a topic for further study and to discover other secondary metabolites for COVID-19 management.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-031-61939-7_12DOI Listing

Publication Analysis

Top Keywords

natural products
12
virus
6
natural
5
potential natural
4
products management
4
management covid-19
4
covid-19 severe
4
severe acute
4
acute respiratory
4
respiratory syndrome
4

Similar Publications

Cryptococcus neoformans, the most opportunistic fungal pathogen, causes cryptococcal meningitis. Based on molecular docking and ADME/toxicity analysis, the top two lead compounds selected from a screening of 5,807 phytochemical compounds from 29 medicinal plants were CID_8299 and CID_71346280, with docking scores of -5.786 and -6.

View Article and Find Full Text PDF

The threat posed by bacteria resistant to common antibiotics creates an urgent need for novel antimicrobials. Non-ribosomal peptide natural products that bind Lipid II, such as vancomycin, represent a promising source for such agents. The fungal defensin plectasin is one of a family of ribosomally produced miniproteins that exert antimicrobial activity via Lipid II binding.

View Article and Find Full Text PDF

Staphylococcus warneri is a gram-positive mesophilic bacterium, resilient to extreme environmental conditions. To unravel its Osmotic Tolerance Response (OTR), we conducted proteomic and metabolomic analyses under drought (PEG) and salt (NaCl) stresses. Our findings revealed 1340 differentially expressed proteins (DEPs) across all treatments.

View Article and Find Full Text PDF

Chia Oil Nanoemulsion Using Chia Mucilage as a Wall Material: An Alternative for Cracker Fat Substitution.

Plant Foods Hum Nutr

December 2024

Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Carretera Sierra Papacal-Chuburná Puerto - Parque Científico y Tecnológico de Yucatán. Tablaje Catastral 31264. Km 5.5, Mérida, México.

Crackers are bakery products that have shown an increase in consumption. One way to make crackers more nutritious is to add bioactive compounds, such as chia oil which is rich in polyunsaturated fatty acids. As these compounds are highly unsaturated, encapsulation techniques, such as nanoemulsion, allow the addition of them in foods, guaranteeing the preservation of their properties.

View Article and Find Full Text PDF

Diabetes Mellitus is a metabolic disorder characterized by high blood glucose levels, causing significant morbidity and mortality rates. This study investigated the antidiabetic, neuroprotective, and antioxidant effects of ethanol extracts of Parkia biglobosa (PB) leaves and seeds in streptozotocin (STZ)-induced diabetic rats. The administration of STZ significantly elevated fasting blood glucose levels (FBGL) to 355-400 mg/mL compared to 111 mg/mL in normal controls, indicating hyperglycemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!