A dual-emission fluorescent biosensing method was developed for simultaneous determination of CaMV35S and NOS in genetically modified (GM) plants. Two designed hairpin DNA (H1, H2) sequences were used as templates to synthesize H1-AgNCs (λ = 570 nm, λ = 625 nm) and H2-AgNCs (λ = 470 nm, λ = 555 nm). By using H1-AgNCs and H2-AgNCs as dual-signal tags, combined with signal amplification strategy of magnetic separation to reduce background signal and an enzyme-free catalytic hairpin assembly (CHA) signal amplification strategy, a novel multi-target fluorescent biosensor was fabricated to detect multiple targets based on FRET between signal tags (donors) and magnetic FeO modified graphene oxide (FeO@GO, acceptors). In the presence of the target NOS and CaMV35S, the hairpin structures of H1 and H2 can be opened respectively, and the exposed sequences will hybridize with the G-rich hairpin sequences HP1 and HP2 respectively, displacing the target sequences to participate in the next round of CHA cycle. Meanwhile, H1-HP1 and H2-HP2 double-stranded DNA sequences (dsDNA) were formed, resulting in the desorption of dsDNA from the surface of FeO@GO due to weak π-π interaction between dsDNA and FeO@GO and leading to the fluorescence recovery of AgNCs. Under optimal conditions, the linear ranges of this fluorescence sensor were 5 ~ 300 nmol L for NOS and 5 ~ 200 nmol L CaMV35S, and the LODs were 0.14 nmol L and 0.18 nmol L, respectively. In addition, the fluorescence sensor has good selectivity for the detection of NOS and CaMV35S in GM soybean samples, showing the potential applications in GM screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-024-06702-9 | DOI Listing |
BMC Cancer
January 2025
Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland.
Aim: The study was designed to evaluate molecular alterations, relevant to the prognosis and personalized therapy of salivary gland cancers (SGCs).
Materials And Methods: DNA was extracted from archival tissue of 40 patients with various SGCs subtypes. A targeted next-generation sequencing (NGS) panel was used for the identification of small-scale mutations, focal and chromosomal arm-level copy number changes.
Discov Oncol
January 2025
Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA.
MYC is one of the most deregulated oncogenic transcription factors in human cancers. MYC amplification/or overexpression is most common in Group 3 medulloblastoma and is positively associated with poor prognosis. MYC is known to regulate the transcription of major components of protein synthesis (translation) machinery, leading to promoted rates of protein synthesis and tumorigenesis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China. Electronic address:
Nucleic acids detection is essential for diagnosing pathogens; however, traditional methods usually face challenges such as low sensitivity, lengthy reaction times, and strict temperature requirements. This study develops a novel photoelectrochemical (PEC) biosensor that integrates recombinase polymerase amplification (RPA) with a 3D-array titania (TiO) nanorods nanorod electrode, addressing the challenge of achieving sensitive detection of RPA-amplified nucleic acids products, thereby enabling earlier and more reliable pathogen detection. The biosensor utilizes a triple-binding mode involving FITC antibodies, target nucleic acids, and an HRP-streptavidin sandwich structure, significantly improving the bio-functionalization of the electrode surface.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
Engineering cells to sense and respond to environmental cues often focuses on maximizing gene regulation at the single-cell level. Inspired by population-level control mechanisms like the immune response, we demonstrate dynamic control and amplification of gene regulation in bacterial populations using programmable plasmid-mediated gene transfer. By regulating plasmid loss rate, transfer rate and fitness effects via Cas9 endonuclease, F conjugation machinery and antibiotic selection, we modulate the fraction of plasmid-carrying cells, serving as an amplification factor for single-cell-level regulation.
View Article and Find Full Text PDFKorean J Clin Oncol
December 2024
Department of Pathology, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India.
Purpose: Breast cancer subtypes are delineated by human epidermal growth factor receptor 2 (HER2) expression, pivotal in treatment selection. HER2-positive tumors typically respond to targeted therapies, whereas HER2-negative tumors lack HER2 overexpression. However, a subset exhibits low HER2 expression without amplification, termed HER2 low breast cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!