The emergence of the "super fungus" Candida auris poses a significant threat to human health, given its multidrug resistance and high mortality rates. Therefore, developing a new antifungal strategy is necessary. Our previous research showed that Baicalein (BE), a key bioactive compound from the dried root of the perennial herb Scutellaria baicalensis Georgi, has strong fungistatic properties against C. auris. Nevertheless, the antifungal activity of BE against C. auris and its mechanism of action requires further investigation. In this study, we explored how BE affects this fungus using various techniques, including scanning electron microscopy (SEM), Annexin V-FITC apoptosis detection, CaspACE FITC-VAD-FMK In Situ Marker, reactive oxygen species (ROS) assay, singlet oxygen sensor green (SOSG) fluorescent probe, enhanced mitochondrial membrane potential (MMP) assay with JC-1, DAPI staining, TUNEL assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Our findings revealed that BE induced several apoptotic features, including phosphatidylserine (PS) externalization, metacaspase activation, nuclear condensation and DNA fragmentation. BE also increased intracellular ROS levels and altered mitochondrial functions. Additionally, transcriptomic analysis and RT-qPCR validation indicated that BE may induce apoptosis in C. auris by affecting ribosome-related pathways, suggesting that ribosomes could be new targets for antifungal agents, in addition to cell walls, membranes, and DNA. This study emphasizes the antifungal activity and mechanism of BE against C. auris, offering a promising treatment strategy for C. auris infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-024-04136-8 | DOI Listing |
PLoS One
January 2025
General Directorate of Infection Prevention & Control, Ministry of Health-Saudi Arabia, Riyadh, Saudi Arabia.
Background: Candida auris (C. auris) is an emerging fungus pathogen associated with nosocomial infections that is seen as a serious global health issue.
Aim: To describe the epidemiology and features of hospital-acquired Candida auris outbreaks in the Ministry of Health hospitals (MOH).
Clin Chem
January 2025
Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States.
Background: Candida auris is an emerging multidrug-resistant pathogen. Interpretation of susceptibility testing can be difficult since minimum inhibitory concentration (MIC) breakpoints have not been fully established.
Methods: All C.
Front Fungal Biol
December 2024
Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.
The antimicrobial peptide (AMP) circularized bacteriocin enterocin AS-48 produced by sp. exhibits broad-spectrum antibacterial activity via dimer insertion into the plasma membrane to form membrane pore structures, compromising membrane integrity and leading to bactericidal activity. A specific alpha-helical region of enterocin AS-48 has been shown to be responsible for the membrane-penetrating activity of the peptide.
View Article and Find Full Text PDFMycopathologia
December 2024
Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98., Debrecen, 4032, Hungary.
The sudden emergence of multidrug- and pan-resistant Candida auris isolates, combined with limited treatment options, poses significant global challenges in healthcare settings. Combination based therapies are promising alternative options to overcome C. auris related infections, where echinocandin and isavuconazole (ISA) combinations may be an interesting and promising approach.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato C.P. 36050, Mexico.
This review explores current advancements and challenges in antifungal therapies amid rising fungal infections, particularly in immunocompromised patients. We detail the limitations of existing antifungal classes-azoles, echinocandins, polyenes, and flucytosine-in managing systemic infections and the urgent need for alternative solutions. With the increasing incidence of resistance pathogens, such as and , we assess emerging antifungal agents, including Ibrexafungerp, T-2307, and N'-Phenylhydrazides, which target diverse fungal cell mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!