Reactive oxygen species (ROS) pose a lethal risk for all life forms by causing damage to cell processes, genome-wide DNA damage-driving mutation, replicative instability, and death. Thus, the development of mechanisms to resist or repair ROS-induced DNA damage is critical for the reliable replication of nucleic acids. DNA repair and protection mechanisms have been discovered in all forms of life. However, the vast array of microbes that may harbor novel repair or protection mechanisms, especially bacterial viruses, have not been adequately assessed. Here, we screened a microbial gene library composed primarily of phage open reading frames (ORFs) to uncover elements that overcome a DNA damage blockade. We report the discovery of one such protein, termed F21, which promotes bacterial survival by possibly repairing or protecting DNA in the face of ROS-induced DNA damage.IMPORTANCEDiscovery of proteins that promote DNA damage repair and protection in the face of reactive oxygen species (ROS) is of vital importance. Our group is in possession of a unique microbial DNA library with which we can screen for undiscovered genes that encode novel proteins with DNA damage repair and protective functions. This library is composed of diverse DNA from a variety of sources, namely bacteriophages, which must be assessed for their novel functions. This work focuses on the discovery of DNA damage repair and protection, but the possibilities for discovery are endless, thus highlighting the significance of this work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536983PMC
http://dx.doi.org/10.1128/spectrum.00365-24DOI Listing

Publication Analysis

Top Keywords

dna damage
24
repair protection
16
reactive oxygen
12
dna
12
damage repair
12
microbial gene
8
oxygen species
8
species ros
8
ros-induced dna
8
protection mechanisms
8

Similar Publications

ECM Modifications Driven by Age and Metabolic Stress Directly Promote the Vascular Smooth Muscle Cell Osteogenic Processes.

Arterioscler Thromb Vasc Biol

January 2025

British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).

Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.

Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.

View Article and Find Full Text PDF

: Tumor associated macrophages (TAMs) are critical components in regulating the immune statuses of the tumor microenvironments. Although TAM has been intensively studied, it is unclear how mitochondrial proteins such as AGK regulate the TAMs' function. : We investigated the AGK function in TAMs using macrophage-specific deficient mice with B16 and LLC syngeneic tumor models.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

Testicular ischemia-reperfusion (I/R) injury during testicular torsion is strongly influenced by oxidative stress caused by excessive accumulation of unscavenged reactive oxygen species. This study aimed to investigate the effects of intra-peritoneal administration of Mito-TEMPO (MT) on I/R injury in testicular torsion/detorsion (T/D) in mice. Forty-two male mice were divided into seven groups including 1 control and 6 treatment groups (360° T/D, 720° T/D, 360° T/D + 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!