Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Differential capacitance is a crucial parameter that connects the experimental observation of electrical double-layer behavior with theoretical models. However, the current number of reported differential capacitance values for deep eutectic solvents remains limited, making it challenging to verify or refute existing models. In this study, we systematically investigate the differential capacitance in deep eutectic solvents using chronoamperometry. By comparing metal and glassy carbon electrodes across various liquid combinations and ion concentrations, we observed a range of distinct capacitance characteristics. While some findings align with the existing mean-field model for ionic liquids, others clearly reflect the influence of electrode materials, with certain cases resisting full explanation by current theoretical models. These results underscore the importance of selecting appropriate electrode materials in experimental studies of such electrolytes and highlight the need for further theoretical advancements in understanding this complex liquid system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440589 | PMC |
http://dx.doi.org/10.1021/acs.jpclett.4c02428 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!