The recent discovery of cyano-substituted aromatic and two-ring polycyclic aromatic hydrocarbon molecules in Taurus Molecular Cloud-1 has prompted questions on how the electronic structure and excited-state dynamics of these molecules are linked with their existence and abundance. Here, we report a photodetachment and frequency- and angle-resolved photoelectron spectroscopy study of jet-cooled para-deprotonated benzonitrile (p-[Bzn-H]-). The adiabatic detachment energy was determined as 1.70 ± 0.01 eV, in good agreement with CCSD(T)/aug-cc-pVTZ calculations. The spectra across the first few electron-volts above threshold are dominated by prompt autodetachment processes associated with excitation of at least five short-lived (tens of femtoseconds) temporary anion shaped resonances since excitation cross sections are several orders of magnitude larger than direct photodetachment cross sections. The photoexcitation vibronic profile is dominated by a ≈640 cm-1 ring deformation mode. [Bzn-H]- lacks a valence-localized excited state situated below the detachment threshold and does not exhibit thermionic emission following excitation of the temporary anion resonances. Thus, [Bzn-H]- is unlikely to be stable in many interstellar environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0231206 | DOI Listing |
Phys Chem Chem Phys
January 2025
The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.
Formic acid (HCOOH) is one of the essential molecules for CO utilization including methanol synthesis and hydrogen carriers. In this study, we have investigated the chemical processes of hydrogen and HCOOH on a dilute-alloy Pd-Cu(111) surface using high-resolution X-ray photoelectron spectroscopy (HR-XPS) and density functional theory (DFT) calculations. The present Pd-Cu(111) surface was prepared at 500 K, and the observed core-level shifts of Pd 3d indicate that Pd atoms were located at the surface and subsurface sites: 335.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Ammonia has garnered significant attention as a promising hydrogen carrier due to its high volumetric energy density, milder storage conditions, and relatively mature infrastructure. The electrochemical ammonia oxidation reaction (AOR) can facilitate the release of hydrogen from ammonia at the point of use, enabling on-demand hydrogen production without the need for high pressure storage. However, current AOR catalysts exhibit high overpotentials and sluggish kinetics, and they are susceptible to poisoning by AOR byproducts.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
Stereochemistry plays a key role in both fundamental chemical processes and the dynamics of a large set of molecular systems of importance in chemistry, medicine and biology. Predicting the chemical transformations of organic precursors in such environments requires detailed kinetic models based on laboratory data. Reactive intermediates play a critical role in constraining the models but their identification and especially their quantification remain challenging.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
Eliminating hazardous antibiotics from aquatic environments has become a major concern in recent years. Tetracycline (TC) compounds pose a challenge for the selective degradation of harmful chemical groups. In this study, we successfully designed carbon vacancies in a gCN@WC (GW) heterostructure for the effective removal of TC pollutants under visible light.
View Article and Find Full Text PDFChem Asian J
January 2025
Charotar University of Science and Technology, Physical Science, P.D. Patel Institute of Applied Sciences, 388421, Changa, INDIA.
The primary obstacle in electrolyzing water is that prolonged large-current operation quickly degrades performance, making it difficult to achieve efficient and continuous hydrogen evolution at high current densities. This work prepared sulfur-doped nickel ferrite nanocomposites using the simple hydrothermal method to improve electrocatalytic green hydrogen production at high-current densities. X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used to analyze the crystalline structure, morphology, and chemical composition of the synthesized nanocomposites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!