We apply the analytically solvable model of two electrons in two orbitals to diradical molecules, characterized by two unpaired electrons. The effect of doubly occupied and empty orbitals is taken into account by means of random phase approximation (RPA). We show that in the static limit, the direct RPA leads to the renormalization of the parameters of the two-orbital model. We test our model by comparing its predictions for singlet-triplet splitting with the results of several multi-reference methods for a set of thirteen molecules. We find that for this set, the static RPA results are close to those of the NEVPT2 method with two orbitals and two electrons in the active space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0227556 | DOI Listing |
Clin Transl Sci
January 2025
NIMML Institute, Blacksburg, Virginia, USA.
NIM-1324 is an oral investigational new drug for autoimmune disease that targets the Lanthionine Synthetase C-like 2 (LANCL2) pathway. Through activation of LANCL2, NIM-1324 modulates CD4+ T cells to bias signaling and cellular metabolism toward increased immunoregulatory function while providing similar support to phagocytes. In primary human immune cells, NIM-1324 reduces type I interferon and inflammatory cytokine (IL-6, IL-8) production.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
The behavior of vicinal Si(001) surfaces are a subject of intense research for years, yet the mechanism behind its step modulation remains unresolved. Step B, in particular, can meander randomly or form a periodic zigzag profile, a surface phenomenon that has eluded explanation due to the lack of appropriate simulation tools. Here, a multiscale simulation strategy, enhanced by machine learning potentials are proposed, to investigate this mesoscale behavior.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Intelligent Manufacturing Laboratory, Production Engineering Institute, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
Direct verification of the geometric accuracy of machined parts cannot be performed simultaneously with active machining operations, as it usually requires subsequent inspection with measuring devices such as coordinate measuring machines (CMMs) or optical 3D scanners. This sequential approach increases production time and costs. In this study, we propose a novel indirect measurement method that utilizes motor current data from the controller of a Computer Numerical Control (CNC) machine in combination with machine learning algorithms to predict the geometric accuracy of machined parts in real-time.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
Phase-change random access memory (PcRAM) faces significant challenges due to the inherent instability of amorphous GeSbTe (GST). While doping has emerged as an effective method for amorphous stabilization, understanding the precise mechanisms of structural modification and their impact on material stability remains a critical challenge. This study provides a comprehensive investigation of elastic strain and stress in crystalline lattices induced by various dopants (C, N, and Al) through systematic measurements of film thickness changes during crystallization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!