Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polarization-dependent photoemission electron microscopy (PD-PEEM) exploits spatial variation in the optical selection rules of materials to image domain formation and material organization on the nanoscale. In this Perspective, we discuss the mechanism of PD-PEEM that results in the observed image contrast in experiments and provide examples of a wide range of material domain structures that PD-PEEM has been able to elucidate, including molecular and polymer domains, local electronic structure and defect symmetry, (anti)ferroelectricity, and ferromagnetism. In the end, we discuss challenges and new directions that are possible with this tool for probing domain structure in materials, including investigating the formation of transient ordered states, multiferroics, and the influence of molecular and polymer order and disorder on excited state dynamics and charge transport.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0225765 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!