In recent years, there has been an increasing focus on microbial ecology and its possible impact on agricultural production, owing to its eco-friendly nature and sustainable use. The current study employs metabolomics technologies and bioinformatics approaches to identify changes in the exometabolome of B24. This research aims to shed light on the mechanisms and metabolites responsible for the antifungal and growth promotion strategies, with potential applications in sustainable agriculture. Metabolomic analysis was conducted using Q Exactive UPLC-MS/MS. Our findings indicate that a total of 3,840 metabolites were identified, with 137 metabolites exhibiting significant differences divided into 61 up and 75 downregulated metabolites based on VIP >1, |FC| >1, and < 0.01. The interaction of B24 monoculture with the co-culture demonstrated a stronger correlation coefficient. The Principal Component Analysis (PCA) demonstrates that PCA1 accounted for 23.36%, while PCA2 accounted for 20.28% distinction. OPLS-DA score plots indicate significant separation among different groups representing (t1) 24% as the predicted component (to1) depicts 14% as the orthogonal component. According to the findings of this comprehensive study, crude extracts from demonstrated varying abilities to impede phytopathogen growth and enhance root and shoot length in tested plants. Through untargeted metabolomics, we discovered numerous potential molecules with antagonistic activity against fungal phytopathogens among the top 10 significant metabolites with the highest absolute log2FC values. These include Tetrangulol, 4-Hydroxybenzaldehyde, and Cyclohexane. Additionally, we identified plant growth-regulating metabolites such as N-Succinyl-L-glutamate, Nicotinic acid, L-Aspartate, and Indole-3-acetamide. The KEGG pathway analysis has highlighted these compounds as potential sources of antimicrobial properties. The inhibitory effect of crude extracts on pathogen growth is primarily attributed to the presence of specific gene clusters responsible for producing cyclic peptides such as ansamycins, porphyrin, alkaloid derivatives, and neomycin. Overall, it is apparent that crude extracts from exhibited varying abilities to inhibit the growth of three phytopathogens and enhancement in both root and shoot length of tested plants. This research enhances our understanding of how secondary metabolites contribute to growth promotion and biocontrol, supporting ecosystem sustainability and resilience while boosting productivity in sustainable agriculture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393692 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1439798 | DOI Listing |
Sci Rep
December 2024
Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland.
The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Horticultural Science and Landscaping engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
Growth regulators can improve the quality and production of fruit trees. This research was conducted over two successive years to evaluate the effect of preharvest sprays of growth regulators on the physicochemical properties of date palm fruit (Phoenix dactylifera cv. 'Shahabi') during khalal and tamar stages in a palm research station at Bushehr province.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
Researchers have repurposed several existing anti-inflammatory drugs as potential antifungal agents in recent years. So, this study aimed to investigate the effects of anti-inflammatory drugs on the growth, biofilm formation, and expression of genes related to morphogenesis and pathogenesis in Candida albicans. The minimum inhibitory concentration (MIC) of anti-inflammatory drugs was assessed using the broth microdilution method.
View Article and Find Full Text PDFVestn Oftalmol
December 2024
Krasnov Research Institute of Eye Diseases, Moscow, Russia.
Unlabelled: Excessive production of extracellular matrix is a key component in the pathogenesis of Salzmann's nodular degeneration (SND). studies of drugs that suppress excessive fibroblast activity may become crucial in developing pathogenetically oriented treatments for SND.
Purpose: This study evaluates the antifibrotic properties of pirfenidone and cyclosporine A (CsA) on cell cultures obtained from patients with SND.
Sci Rep
December 2024
Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
Rhazya stricta, a perennial shrub native to the Middle East and South Asia, has been used in traditional medicine for various therapeutic purposes, including antimicrobial action. The current study aimed to compare the antifungal properties of 96% and 50% ethanolic extracts of R. stricta leaves and their biogenic silver nanoparticles (AgNPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!