Repeated stimulus exposure alters the brain's response to the stimulus. We investigated the underlying neural mechanisms by recording functional MRI data from human observers passively viewing 120 presentations of two Gabor patches (each Gabor repeating 60 times). We evaluated support for two prominent models of stimulus repetition, the fatigue model and the sharpening model. Our results uncovered a two-stage learning process in the primary visual cortex. In Stage 1, univariate BOLD activation in V1 decreased over the first twelve repetitions of the stimuli, replicating the well-known effect of repetition suppression. Applying MVPA decoding along with a moving window approach, we found that (1) the decoding accuracy between the two Gabors decreased from above-chance level (∼60% to ∼70%) at the beginning of the stage to chance level at the end of the stage (∼50%). This result, together with the accompanying weight map analysis, suggested that the learning dynamics in Stage 1 were consistent with the predictions of the fatigue model. In Stage 2, univariate BOLD activation for the remaining 48 repetitions of the two stimuli exhibited significant fluctuations but no systematic trend. The MVPA decoding accuracy between the two Gabor patches was at chance level initially and became progressively higher as stimulus repetition continued, rising above and staying above chance level starting at the ∼35th repetition. Thus, results from the second stage supported the notion that sustained and prolonged stimulus repetition prompts sharpened representations. Additional analyses addressed (1) whether the neural patterns within each learning stage remained stable and (2) whether new neural patterns were evoked in Stage 2 relative to Stage 1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398309 | PMC |
http://dx.doi.org/10.1101/2024.09.03.611111 | DOI Listing |
Q J Exp Psychol (Hove)
January 2025
Proactive interference occurs when older memories interfere with current information processing and retrieval. It is often explained with reference to familiarity, where the reappearance of highly familiar items from the recent past produces more disruption than older, less familiar items. However, there are other forms of familiarity beyond recency that may be important, and these were explored in a verbal recent-probes task.
View Article and Find Full Text PDFJ Cogn
January 2025
University of Trier, Department of Cognitive Psychology, Germany.
Inhibition of return (IOR) refers to a location repetition cost typically observed when signaling the detection of or localizing sequentially presented stimuli repeating or changing their location. In discrimination tasks, however, IOR is often reduced or even absent; here, effects of binding and retrieval are thought to take place. Information is bound into an event file, which upon feature repetition causes retrieval, leading to partial repetition costs.
View Article and Find Full Text PDFJ Cogn Neurosci
January 2025
Universidade de Lisboa, Lisbon, Portugal.
Behavioral research has shown that inconsistency in spelling-to-sound mappings slows visual word recognition and word naming. However, the time course of this effect remains underexplored. To address this, we asked skilled adult readers to perform a 1-back repetition detection task that did not explicitly involve phonological coding, in which we manipulated lexicality (high-frequency words vs.
View Article and Find Full Text PDFMem Cognit
January 2025
Department of Neurology, University of California Davis, Sacramento, CA, 95816, USA.
In cognitive psychology, research on attention is shifting from focusing primarily on how people orient toward stimuli in the environment toward instead examining how people orient internally toward memory representations. With this new shift the question arises: What factors in the environment send attention inward? A recent proposal is that one factor is cue familiarity-detection (Cleary, Irving & Mills, Cognitive Science, 47, e13274, 2023). Within this theoretical framework, we reinterpret a decades-old empirical pattern-a primacy effect in memory for repetitions-in a novel way.
View Article and Find Full Text PDFSci Rep
January 2025
School of Biological Sciences, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, 30332-0535, GA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!