Injuries to fibrous connective tissues have very little capacity for self-renewal and exhibit poor healing after injury. Phenotypic shifts in macrophages play a vital role in mediating the healing response, creating an opportunity to design immunomodulatory biomaterials which control macrophage polarization and promote regeneration. In this study, electrospun poly(-caprolactone) fibers with increasing surface roughness (SR) were produced by increasing relative humidity and inducing vapor-induced phase separation during the electrospinning process. The impact of surface roughness on macrophage phenotype was assessed using human monocyte-derived macrophages and using B6.Cg-Tg(Csf1r-EGFP)1Hume/J (MacGreen) mice. experiments showed that macrophages cultured on mesh with increasing SR exhibited decreased release of both pro- and anti-inflammatory cytokines potentially driven by increased protein adsorption and biophysical impacts on the cells. Further, increasing SR led to an increase in the expression of the pro-regenerative cell surface marker CD206 relative to the pro-inflammatory marker CD80. Mesh with increasing SR were implanted subcutaneously in MacGreen mice, again showing an increase in the ratio of cells expressing CD206 to those expressing CD80 visualized by immunofluorescence. SR on implanted biomaterials is sufficient to drive macrophage polarization, demonstrating a simple feature to include in biomaterial design to control innate immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398424PMC
http://dx.doi.org/10.1101/2024.08.30.610568DOI Listing

Publication Analysis

Top Keywords

surface roughness
12
human monocyte-derived
8
macrophage phenotype
8
macrophage polarization
8
macgreen mice
8
mesh increasing
8
increasing
5
electrospun fiber
4
surface
4
fiber surface
4

Similar Publications

3D-Printed PCL/SrHA@DFO Bone Tissue Engineering Scaffold with Bone Regeneration and Vascularization Function.

ACS Appl Bio Mater

January 2025

School of Materials Science and Physics, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.

The application of a three-dimensional (3D)-printed biological functional scaffold in the repair of bone defects is a promising strategy. In this study, strontium-containing hydroxyapatite (SrHA) powder was synthesized by the hydrothermal method, and then poly(ε-caprolactone) (PCL)/HA and PCL/SrHA composite scaffolds were prepared by the high-temperature melt extrusion 3D printing technology. The basic physical and chemical properties, in vitro biological properties, osteogenesis, and angiogenesis abilities of the scaffold were studied.

View Article and Find Full Text PDF

Achieving dual functionalities of hydrophobicity and excellent microwave transmission in a single material remains a significant challenge, especially for advanced applications in aerospace, telecommunications, and navigation engineering. Inspired by natural designs like chestnut burrs, bioinspired polyaniline (PANI) particles with tunable micro-/nanostructures through a facile template-free polymerization process have been developed. By regulating the polarity of the reaction system, temperature, and reaction time, various hierarchical structures, including cross-linked nanosheets, chestnut burr-like spheres, and starburst flower-like structures, are synthesized.

View Article and Find Full Text PDF

In the current investigation, the efficiency inhibition of two newly synthesized bi-pyrazole derivatives, namely 2,3-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] pyridine (Tetra-Pz-Ortho) and 1,4-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] benzene (Tetra-Pz-Para) for corrosion of carbon steel (C&S) in 1 M HCl medium was evaluated. A Comparative study of inhibitor effect of Tetra-Pz-Ortho and Tetra-Pz-Para was conducted first using weight loss method and EIS (Electrochemical Impedance Spectroscopy) and PDP (Potentiodynamic Polarisation) techniques. Tetra-Pz-Ortho and Tetra-Pz-Para had a maximum inhibition efficacy of 97.

View Article and Find Full Text PDF

Direct force measurements by atomic force microscopy (AFM) have become an indispensable analytical tool in the last decades. Force measurements have been widely used for adhesion measurements, often in combination with the colloidal probe technique. For the latter technique, a colloidal particle is attached to the end of an AFM cantilever, proving great flexibility in terms of colloid/surface interaction to be studied.

View Article and Find Full Text PDF

Deep eutectic solvent-enabled lignocellulosic biomass valorization: Toward understanding of biomass pretreatment, lignin dissolution, and lignin's antioxidant activity.

Int J Biol Macromol

January 2025

State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing 100029, China. Electronic address:

A comprehensive study was conducted to determine the effects of water and ethylene glycol (EG) on biomass pretreatment using a binary deep eutectic solvent (DES) containing choline chloride and acetic acid (1ChCl3AC) at a mole ratio of 1:3. Different quantities of water and EG were combined with 1ChCl3AC to pretreat wheat straw, miscanthus, eucalyptus, and sorghum stalk at 130 °C for 6 h. The changes in nanopore structure and surface roughness of wet biomass, as well as biomass crystallinity after 1ChCl3AC-based pretreatment were investigated using XRD and small-angle neutron scattering (SANS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!