AI Article Synopsis

  • Sex significantly influences biological processes in the kidneys, showing distinct structural and metabolic differences between males and females, which are essential for biomedical research and drug development.
  • Using advanced kidney-specific arteriovenous metabolomics and transcriptomics, researchers discovered that female kidneys retain higher levels of aldosterone and adapt differently to a ketogenic diet compared to male kidneys.
  • The findings highlight that female kidneys efficiently absorb fatty acids and release 3-hydroxybutyrate, while male kidneys do the opposite, revealing important insights into how sex differences impact disease prevalence and treatment responses in kidney health.

Article Abstract

Sex is a fundamental biological variable important in biomedical research, drug development, clinical trials, and prevention approaches. Among many organs, kidneys are known to exhibit remarkable structural, histological, and pathological differences between sexes. However, whether and how kidneys display distinct metabolic activities between sexes is poorly understood. By developing kidney-specific arteriovenous (AV) metabolomics combined with transcriptomics, we report striking sex differences in both basal metabolic activities and adaptive metabolic remodeling of kidneys after a fat-enriched ketogenic diet (KD), a regimen known to mitigate kidney diseases and improve immunotherapy for renal cancer. At the basal state, female kidneys show highly accumulated aldosterone and various acylcarnitines. In response to the KD, aldosterone levels remain high selectively in females but the sex difference in acylcarnitines disappears. AV data revealed that, under KD, female kidneys avidly take up circulating fatty acids and release 3-hydroxybutyrate (3-HB) whereas male kidneys barely absorb fatty acids but consistently take up 3-HB. Although both male and female kidneys take up gluconeogenic substrates such as glycerol, glutamine and lactate, only female kidneys exhibit net glucose release. Kidney transcriptomics data incompletely predict these sex differences, suggesting post-transcriptional/translational regulation mechanisms. This study provides foundational insights into the sex-dependent and diet-elicited metabolic flexibility of the kidneys in vivo, serving as a unique resource for understanding variable disease prevalence and drug responses between male and female kidneys.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398387PMC
http://dx.doi.org/10.1101/2024.09.02.610869DOI Listing

Publication Analysis

Top Keywords

female kidneys
20
kidneys
11
metabolic remodeling
8
remodeling kidneys
8
arteriovenous metabolomics
8
kidneys exhibit
8
metabolic activities
8
sex differences
8
fatty acids
8
3-hb male
8

Similar Publications

A female patient in middle childhood was diagnosed with coarctation of the aorta at one month of age and underwent a successful cortectomy. At 11 years old, she developed re-coarctation, which was managed through interventional cardiology. Shortly after the procedure, she experienced a sudden and severe clinical decline, presenting with hypoperfusion of the lower extremities, gastrointestinal bleeding, acute kidney injury, and pancreatitis.

View Article and Find Full Text PDF

Background: Alport syndrome (AS) is a multifaceted condition that primarily affects the basement membranes of the kidneys, ears, and eyes. AS is considered the second most common cause of hereditary renal failure, exhibiting varied clinical manifestations across different lifespans. The aim of this study is to investigate the clinical features and genetic profile of AS and to elucidate the genotype-phenotype correlation of AS.

View Article and Find Full Text PDF

Dipeptidyl peptidase 4 (DPP4) is a transmembrane serine exopeptidase abundantly expressed in the kidneys, predominantly in the proximal tubule (PT); however, its non-enzymatic functions in this nephron segment remain poorly understood. While DPP4 physically associates with the Na /H exchanger isoform 3 (NHE3) and its inhibitors exert natriuretic effects, the DPP4 role in blood pressure (BP) regulation remains controversial. This study investigated the effects of PT-specific deletion ( ) and global deletion ( ) on systolic blood pressure (SBP), natriuresis, and NHE3 regulation under baseline and angiotensin II (Ang II)-stimulated conditions in both male and female mice.

View Article and Find Full Text PDF

Glucose-6-Phosphatase (G6Pase), a key enzyme in gluconeogenesis and glycogenolysis in the mammalian liver and kidney, converts glucose-6-phosphate to glucose for maintaining systemic blood glucose homeostasis during nutrient deprivation. However, its function has remained elusive in insects, which have no need for G6Pase in sugar homeostasis since they convert glucose-6-phosphate to trehalose, their main circulating sugar, via trehalose phosphate synthase (TPS1). In this study we identify an unexpected and essential requirement for G6Pase in male fertility, specifically to produce motile sperm.

View Article and Find Full Text PDF

Background: Targeted therapies, including axitinib, a vascular endothelial growth factor receptor inhibitor, and sintilimab, a programmed cell death protein-1 inhibitor, have shown promise in the treatment of advanced renal cell carcinoma (RCC). Although their individual efficacies have been demonstrated, the potential synergistic effects of combining these two agents are still being explored.

Methods: This study retrospectively analysed patients with advanced RCC admitted to our hospital from January 2022 to December 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!