Vaccines signify one of the economical and reasonable means to prevent and eradicate the important infectious diseases. Conventional vaccines like live attenuated and inactivated vaccines comprise of whole pathogen either in attenuated or killed form. While, new generation vaccines have been designed to elicit immune response by genetically modifying only the nucleic acid portion of that pathogen. These new generation therapeutics include mRNA vaccines, DNA plasmid vaccines, chimeric vaccines and recombinant viral vector-based vaccines. Nucleic acid based vaccines use genetic material itself thus, they are highly stable and potent in nature to induce long-lasting immune response. Amongst these novel vaccine platforms, viral vector-based vaccines is one such emerging field which has proven to be extremely effective and potent. Nowadays, veterinary medicine has also accepted this innovative vectored vaccine platform to develop an effective control strategy against certain important viral diseases of animals. Viral vector-based vaccine uses various DNA and RNA viruses of human or animal origin to carry an immunogenic transgene of target pathogen. These vaccines enhance both humoral and cell mediated immune response without use of any accessory immune-stimulants. Till today, several viruses have been modified to be characterized as vaccine vectors. Currently, large number of research programs are going on to develop vectored vaccines and novel viral vector for veterinary use. In the present review, different kinds of viral vectored vaccines having veterinary importance have been discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399537PMC
http://dx.doi.org/10.1007/s12088-024-01341-3DOI Listing

Publication Analysis

Top Keywords

viral vector-based
16
vaccines
14
vector-based vaccines
12
immune response
12
nucleic acid
8
vectored vaccines
8
viral
7
revolutionizing veterinary
4
veterinary health
4
health viral
4

Similar Publications

Recombinant adeno-associated virus (AAV) is one of the main viral vector-based gene therapy platforms. AAV is a virus consisting of a ≈25 nm diameter capsid with a ≈4.7 kb cargo capacity.

View Article and Find Full Text PDF

The occurrence of viral diseases poses a huge threat and impact on human public health safety and the development of the animal and fishery industry. Here, a strain of single-chain antibody fragment, scFv-1, was isolated from the phage antibody display library construct by immunizing New Zealand white rabbits with rhabdovirus. analysis showed that the single-chain antibody could inhibit the infection of the virus in multiple pathways, including adsorption, fusion, and release.

View Article and Find Full Text PDF

On December 16, 2022, the FDA approved the adenoviral vector-based gene therapy nadofaragene firadenovec-vncg (brand name Adstiladrin) for the treatment of adult patients with high-risk bacillus Calmette-Guérin (BCG)-unresponsive non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS). The product represents the first approved adenoviral vector-based gene therapy and the first approved gene therapy for bladder cancer. Determination of efficacy was based on results from Study rAd-IFN-CS-003 (Study CS-003), a single-arm trial in 98 evaluable patients with BCG-unresponsive NMIBC with CIS who received intravesical instillations of the gene therapy product (75 mL of nadofaragene firadenovec at 3 × 1011 viral particles per mL) once every 3 months.

View Article and Find Full Text PDF

Ocular gene therapy has rapidly advanced from proof-of-concept studies to clinical trials by exploiting the unique advantages of the eye, including its easy accessibility, relative immune privilege, and the ability to use the contralateral eye as a control. An important step forward was achieved with the Food and Drug Administration (FDA) approval of voretigene neparvovec (Luxturna) for the treatment of biallelic RPE65-mutation-associated retinal dystrophies in 2017. Gene therapy is a promising field aimed at treating various inherited and acquired eye diseases.

View Article and Find Full Text PDF

A functional unbalance of TRPM8 and Kv1 channels underlies orofacial cold allodynia induced by peripheral nerve damage.

Front Pharmacol

December 2024

Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.

Cold allodynia is a debilitating symptom of orofacial neuropathic pain resulting from trigeminal nerve damage. The molecular and neural bases of this sensory alteration are still poorly understood. Here, using chronic constriction injury (CCI) of the infraorbital nerve (IoN) (IoN-CCI) in mice, combined with behavioral analysis, Ca imaging and patch-clamp recordings of retrogradely labeled IoN neurons in culture, immunohistochemistry, and adeno-associated viral (AAV) vector-based delivery , we explored the mechanisms underlying the altered orofacial cold sensitivity resulting from axonal damage in this trigeminal branch.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!