This study introduces a novel one-pot method employing tannic acid (TA) to synthesize stable gold nanoparticles (TA-AuNPs), which are characterized using transmission electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. We apply these TA-AuNPs in a newly developed colorimetric assay for hydrogen peroxide (HO) detection that utilizes the oxidation of iodide (I) on TA-AuNPs, leading to a detectable yellow color change in the solution. The reaction kinetics are captured by the rate equation R = 0.217[KI][HO]. The possible sensing mechanism was proposed through density functional theory calculations. At the optimum conditions, the proposed TA-AuNPs/I system demonstrated a linear relationship between HO concentration and absorbance intensity (λ = 350 nm) and achieved a limit of detection (LOD) of 7.33 μM. Furthermore, we expand the utility of this approach to glucose detection by integrating glucose oxidase into the system, resulting in a LOD of 10.0 μM. Application of this method to actual urine samples yielded spiked recovery rates ranging from 96.6-102.0% and relative standard deviations between 3.00-8.34%, underscoring its efficacy and potential for real-world bioanalytical challenges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391431 | PMC |
http://dx.doi.org/10.1021/acsomega.4c05826 | DOI Listing |
Anal Chim Acta
February 2025
Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China. Electronic address:
Background: Integrating natural enzymes and nanomaterials exhibiting tailored enzyme-like activities is an effective strategy for the application of cascade reactions. It is essential to develop a highly efficient and robust glucose oxidase-catalase (GOx-CAT) cascade system featuring controllable enzyme activity, a reliable supply of oxygen, and improved stability for glucose depletion in cancer starvation therapy. However, the ambiguous relationship between structure and performance, and the difficulty in controlling enzyme-mimic activity, significantly hinder their broader application.
View Article and Find Full Text PDFInt J Pharm
January 2025
Clinical Center for Tumor Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China. Electronic address:
The therapeutic outcomes of medications were restricted by the colonic mucosal barrier during the treatment of colorectal cancer (CRC). Micro/nanomotors can overcome the mucus barriers to reach deep colorectal tumors. In this study, we constructed a novel microsized PLGA-Pt micromotor (MM) driven by hydrogen peroxide (HO) to enhance drug delivery to the CRC tissues and achieve effective antitumor therapy.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China. Electronic address:
Waterlogging stress is a significant abiotic factor that severely limits plant growth and development. Identifying genes involved in the waterlogging stress response and understanding the mechanisms by which plants resist waterlogging stress are therefore critical. In this study, we identified a specific role for two transcription factors, BPC1 and BPC2, in the waterlogging stress response of Arabidopsis thaliana.
View Article and Find Full Text PDFBiomaterials
January 2025
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China. Electronic address:
Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment. However, abnormal tumor vasculature and excess lactate contribute to tumor immunosuppression and confer resistance to ICB therapy, seriously limiting its clinical application. Here, we have developed a bioresponsive nanoreactor, ALMn, which consists of hollow manganese dioxide nanoparticles with encapsulation of lactate oxidase and L-Arginine, to overcome immunosuppression and sensitize ICB therapy.
View Article and Find Full Text PDFSci Total Environ
January 2025
Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
The in-situ electrochemical production of hydrogen peroxide (HO) offers a promising approach for ballast water treatment. However, further advancements are required to develop electrocatalysts capable of achieving efficient HO generation in seawater environments. Herein, we synthesized two-dimensional lamellated porous carbon nanosheets enriched with oxygen functional groups, which exhibited exceptional performance in HO electrosynthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!