AI Article Synopsis

  • CRISPR/Cas systems have great potential to transform cancer treatment, especially through the use of extracellular vesicles (EVs) and viral vectors for effective delivery.
  • Engineered EVs, such as exosomes, can successfully transport CRISPR components to tumor cells, inhibiting growth and improving chemotherapy response, but face challenges like off-target effects and immune reactions.
  • Viral vectors like adeno-associated viruses (AAVs) and adenoviral vectors (AdVs) are effective delivery methods, each with unique advantages and hurdles, and future efforts will focus on optimizing these systems for safer, more targeted cancer therapies.

Article Abstract

The delivery of CRISPR/Cas systems holds immense potential for revolutionizing cancer treatment, with recent advancements focusing on extracellular vesicles (EVs) and viral vectors. EVs, particularly exosomes, offer promising opportunities for targeted therapy due to their natural cargo transport capabilities. Engineered EVs have shown efficacy in delivering CRISPR/Cas components to tumor cells, resulting in inhibited cancer cell proliferation and enhanced chemotherapy sensitivity. However, challenges such as off-target effects and immune responses remain significant hurdles. Viral vectors, including adeno-associated viruses (AAVs) and adenoviral vectors (AdVs), represent robust delivery platforms for CRISPR/Cas systems. AAVs, known for their safety profile, have already been employed in clinical trials for gene therapy, demonstrating their potential in cancer treatment. AdVs, capable of infecting both dividing and non-dividing cells, offer versatility in CRISPR/Cas delivery for disease modeling and drug discovery. Despite their efficacy, viral vectors present several challenges, including immune responses and off-target effects. Future directions entail refining delivery systems to enhance specificity and minimize adverse effects, heralding personalized and effective CRISPR/Cas-mediated cancer therapies. This article underscores the importance of optimized delivery mechanisms in realizing the full therapeutic potential of CRISPR/Cas technology in oncology. As the field progresses, addressing these challenges will be pivotal for translating CRISPR/Cas-mediated cancer treatments from bench to bedside.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392784PMC
http://dx.doi.org/10.3389/fimmu.2024.1444437DOI Listing

Publication Analysis

Top Keywords

viral vectors
16
crispr/cas-mediated cancer
12
cancer treatment
12
delivery systems
8
extracellular vesicles
8
crispr/cas systems
8
off-target effects
8
immune responses
8
cancer
6
vectors
5

Similar Publications

Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.

View Article and Find Full Text PDF

Spatiotemporal analysis of mosquito-borne infections and mosquito vectors in mainland Portugal.

BMC Infect Dis

January 2025

EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, nº 135, Porto, 4050 - 600, Portugal.

Background: The incidence of mosquito-borne infections has increased worldwide. Mainland Portugal's characteristics might favour the (re)emergence of mosquito-borne diseases. This study aimed to characterize the spatial distribution of vectors and notification rates of imported cases of mosquito-borne infections in mainland Portugal and demarcate the areas where these geographies overlap.

View Article and Find Full Text PDF

A Bibliometric Analysis on Multi-epitope Vaccine Development Against SARS-CoV-2: Current Status, Development, and Future Directions.

Mol Biotechnol

January 2025

Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.

The etiological agent for the coronavirus disease 2019 (COVID-19), the SARS-CoV-2, caused a global pandemic. Although mRNA, viral-vectored, DNA, and recombinant protein vaccine candidates were effective against the SARS-CoV-2 Wuhan strain, the emergence of SARS-CoV-2 variants of concern (VOCs) reduced the protective efficacies of these vaccines. This necessitates the need for effective and accelerated vaccine development against mutated VOCs.

View Article and Find Full Text PDF

During the COVID-19 pandemic, heterologous vaccination strategies were employed to alleviate the strain on vaccine supplies. The Thailand Ministry of Health adopted these strategies using vector, inactivated, and mRNA vaccines. However, this approach has introduced challenges for SARS-CoV-2 sero-epidemiology studies.

View Article and Find Full Text PDF

Unexpected renal side effects of mRNA COVID-19 vaccines; a single-center experience and short review.

Am J Med Sci

January 2025

Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.

Background: In late 2019, the World Health Organization declared Coronavirus disease 2019 a global emergency. Since then, many vaccines have been developed to combat the pandemic. Millions of people have received one of the approved COVID-19 vaccines; unfortunately, some adverse events also have been recorded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!