Unveiling circRNA-mediated ceRNA networks in ischemic stroke by integrative analysis of multi-source gene expression profiling.

Heliyon

Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.

Published: September 2024

Background: Circular RNAs (circRNAs) are emerging as potential therapeutic targets for ischemic stroke (IS) due to their regulatory roles in inflammation and apoptosis. This study aimed to develop a comprehensive and robust IS-specific competing endogenous RNA (ceRNA) network to facilitate the identification of novel diagnostic and therapeutic targets.

Methods: We integrated expression data from 15 IS studies using the Rank-In algorithm to minimize batch effects. Differentially expressed circRNAs, miRNAs, and mRNAs were identified by comparing IS and control samples. Functional enrichment analysis of differentially expressed circRNA host genes revealed significantly enriched pathways and Gene Ontology (GO) terms relevant to IS pathogenesis. We further predicted miRNA-circRNA and mRNA-miRNA interactions, enabling the construction of a comprehensive ceRNA network to identify circRNA-related genes with diagnostic potential for IS.

Results: Integrated analysis revealed 199 differentially expressed circRNAs, 103 miRNAs, and 1736 mRNAs in IS patients. Functional enrichment analysis implicated these molecules in relevant pathways like the neurotrophin signaling pathway and p53 signaling pathway. The constructed circRNA-miRNA-mRNA regulatory network provided insights into potential mechanisms underlying IS. Three circRNA-related genes (RGS2, CDK5R1, and NSF) displayed promising diagnostic potential for IS when combined.

Conclusions: We successfully constructed a robust and informative IS-specific ceRNA network by integrating data from diverse sources. This network identified differentially expressed RNAs and revealed enriched pathways potentially involved in IS pathogenesis. Notably, our analysis identified CDK5R1, RGS2, and NSF as potential diagnostic biomarkers for IS. This study sheds light on a circRNA-mediated regulatory network with potential diagnostic and therapeutic implications for ischemic stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402246PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e36988DOI Listing

Publication Analysis

Top Keywords

differentially expressed
16
ischemic stroke
12
cerna network
12
diagnostic therapeutic
8
expressed circrnas
8
functional enrichment
8
enrichment analysis
8
revealed enriched
8
enriched pathways
8
circrna-related genes
8

Similar Publications

Identification, Clinical Values, and Prospective Pathway Signaling of Lipid Metabolism Genes in Epilepsy and AED Treatment.

Mol Neurobiol

January 2025

Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing, 210009, Jiangsu, China.

The dysregulation of lipid metabolism has been associated with the etiology and progression of the neurological pathology. However, the roles of lipid metabolism and the molecular mechanism in epilepsy and the use of antiepileptic drugs (AEDs) are relatively understudied. Gene expression profiles of GSE143272 from blood samples were included for differential analysis, and the lipid metabolism-related differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

Objectives: The ability to differentiate epileptic- and non-epileptic events is challenging due to a lack of reliable molecular seizure biomarker that provide a retrospective diagnosis. Here, we use next generation sequencing methods on whole blood samples to identify changes in RNA expression following seizures.

Methods: Blood samples were obtained from 32 patients undergoing video electroencephalogram (vEEG) monitoring.

View Article and Find Full Text PDF

Objective: The objective is to investigate the differences in urinary organic acid (OA) profiles and metabolism between healthy control (HC) pregnant women and those with gestational diabetes mellitus (GDM) during the second trimester and third trimester of pregnancy.

Methods: A total of 66 HC pregnant women and 32 pregnant women with GDM were assessed for 107 hydrophilic metabolites in urine samples collected during the second and third trimester of pregnancy using tandem mass spectrometry. The urine OA profiles for each group were obtained, and metabolomic analysis and discussion were conducted.

View Article and Find Full Text PDF

Background: Recent studies have highlighted the role of RNA modification, that is, the dysregulation of epitranscriptomics, in tumorigenesis and progression. The potential for undoing epigenetic changes may develop novel therapeutic and prognostic approaches. However, the roles of these RNA modifications in the tumor microenvironment (TME) are still unknown.

View Article and Find Full Text PDF

Genomic and cellular responses to aspirin in colonic organoids from African- and European-Americans.

Physiol Genomics

January 2025

Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois.

Aspirin (ASA) is a proven chemoprotective agent for colorectal cancer (CRC), though inter-individual responses and cellular mechanisms are not well characterized. Human organoids are ideal to study treatment responses across individuals. Here, colonic organoids from African-Americans (AA) and European-Americans (EA)were used to profile genomic and cellular ASA responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!