Background: Circular RNAs (circRNAs) are emerging as potential therapeutic targets for ischemic stroke (IS) due to their regulatory roles in inflammation and apoptosis. This study aimed to develop a comprehensive and robust IS-specific competing endogenous RNA (ceRNA) network to facilitate the identification of novel diagnostic and therapeutic targets.
Methods: We integrated expression data from 15 IS studies using the Rank-In algorithm to minimize batch effects. Differentially expressed circRNAs, miRNAs, and mRNAs were identified by comparing IS and control samples. Functional enrichment analysis of differentially expressed circRNA host genes revealed significantly enriched pathways and Gene Ontology (GO) terms relevant to IS pathogenesis. We further predicted miRNA-circRNA and mRNA-miRNA interactions, enabling the construction of a comprehensive ceRNA network to identify circRNA-related genes with diagnostic potential for IS.
Results: Integrated analysis revealed 199 differentially expressed circRNAs, 103 miRNAs, and 1736 mRNAs in IS patients. Functional enrichment analysis implicated these molecules in relevant pathways like the neurotrophin signaling pathway and p53 signaling pathway. The constructed circRNA-miRNA-mRNA regulatory network provided insights into potential mechanisms underlying IS. Three circRNA-related genes (RGS2, CDK5R1, and NSF) displayed promising diagnostic potential for IS when combined.
Conclusions: We successfully constructed a robust and informative IS-specific ceRNA network by integrating data from diverse sources. This network identified differentially expressed RNAs and revealed enriched pathways potentially involved in IS pathogenesis. Notably, our analysis identified CDK5R1, RGS2, and NSF as potential diagnostic biomarkers for IS. This study sheds light on a circRNA-mediated regulatory network with potential diagnostic and therapeutic implications for ischemic stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402246 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e36988 | DOI Listing |
Mol Neurobiol
January 2025
Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing, 210009, Jiangsu, China.
The dysregulation of lipid metabolism has been associated with the etiology and progression of the neurological pathology. However, the roles of lipid metabolism and the molecular mechanism in epilepsy and the use of antiepileptic drugs (AEDs) are relatively understudied. Gene expression profiles of GSE143272 from blood samples were included for differential analysis, and the lipid metabolism-related differentially expressed genes (DEGs) were identified.
View Article and Find Full Text PDFJ Neurol
January 2025
Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
Objectives: The ability to differentiate epileptic- and non-epileptic events is challenging due to a lack of reliable molecular seizure biomarker that provide a retrospective diagnosis. Here, we use next generation sequencing methods on whole blood samples to identify changes in RNA expression following seizures.
Methods: Blood samples were obtained from 32 patients undergoing video electroencephalogram (vEEG) monitoring.
Acta Diabetol
January 2025
Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Objective: The objective is to investigate the differences in urinary organic acid (OA) profiles and metabolism between healthy control (HC) pregnant women and those with gestational diabetes mellitus (GDM) during the second trimester and third trimester of pregnancy.
Methods: A total of 66 HC pregnant women and 32 pregnant women with GDM were assessed for 107 hydrophilic metabolites in urine samples collected during the second and third trimester of pregnancy using tandem mass spectrometry. The urine OA profiles for each group were obtained, and metabolomic analysis and discussion were conducted.
Discov Oncol
January 2025
Department of Oncology, Yanbian University Hospital, Yanji, 133000, China.
Background: Recent studies have highlighted the role of RNA modification, that is, the dysregulation of epitranscriptomics, in tumorigenesis and progression. The potential for undoing epigenetic changes may develop novel therapeutic and prognostic approaches. However, the roles of these RNA modifications in the tumor microenvironment (TME) are still unknown.
View Article and Find Full Text PDFPhysiol Genomics
January 2025
Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois.
Aspirin (ASA) is a proven chemoprotective agent for colorectal cancer (CRC), though inter-individual responses and cellular mechanisms are not well characterized. Human organoids are ideal to study treatment responses across individuals. Here, colonic organoids from African-Americans (AA) and European-Americans (EA)were used to profile genomic and cellular ASA responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!