This paper introduces a novel hybrid optimization algorithm, PDO-DE, which integrates the Prairie Dog Optimization (PDO) algorithm with the Differential Evolution (DE) strategy. This research aims to develop an algorithm that efficiently addresses complex optimization problems in engineering design and network intrusion detection systems. Our method enhances the PDO's search capabilities by incorporating the DE's principal mechanisms of mutation and crossover, facilitating improved solution exploration and exploitation. We evaluate the effectiveness of the PDO-DE algorithm through rigorous testing on 23 classical benchmark functions, five engineering design problems, and a network intrusion detection system (NIDS). The results indicate that PDO-DE outperforms several state-of-the-art optimization algorithms regarding convergence speed and accuracy, demonstrating its robustness and adaptability across different problem domains. The PDO-DE algorithm's potential applications extend to engineering challenges and cybersecurity issues, where efficient and reliable solutions are critical; for example, the NIDS results show significant results in detection rate, false alarm, and accuracy with 98.1%, 2.4%, and 96%, respectively. The innovative integration of PDO and DE contributes significantly to stochastic optimization and swarm intelligence, offering a promising new tool for tackling diverse optimization problems. In conclusion, the PDO-DE algorithm represents a significant scientific advancement in hybrid optimization techniques, providing a more effective approach for solving real-world problems that require high precision and optimal resource utilization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11401024PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e36663DOI Listing

Publication Analysis

Top Keywords

engineering design
12
network intrusion
12
intrusion detection
12
prairie dog
8
optimization
8
dog optimization
8
differential evolution
8
design problems
8
problems network
8
detection system
8

Similar Publications

Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.

View Article and Find Full Text PDF

The study suggests a better multi-objective optimization method called 2-Archive Multi-Objective Cuckoo Search (MOCS2arc). It is then used to improve eight classical truss structures and six ZDT test functions. The optimization aims to minimize both mass and compliance simultaneously.

View Article and Find Full Text PDF

Spherical tanks have been predominantly used in process industries due to their large storage capability. The fundamental challenges in process industries require a very efficient controller to control the various process parameters owing to their nonlinear behavior. The current research work in this paper aims to propose the Approximate Generalized Time Moments (AGTM) optimization technique for designing Fractional-Order PI (FOPI) and Fractional-Order PID (FOPID) controllers for the nonlinear Single Spherical Tank Liquid Level System (SSTLLS).

View Article and Find Full Text PDF

This study investigates the implementation of collaborative route planning between trucks and drones within rural logistics to improve distribution efficiency and service quality. The paper commences with an analysis of the unique characteristics and challenges inherent in rural logistics, emphasizing the limitations of traditional methods while highlighting the advantages of integrating truck and drone technologies. It proceeds to review the current state of development for these two technologies and presents case studies that illustrate their application in rural logistics.

View Article and Find Full Text PDF

The novel coronavirus (COVID-19) has affected more than two million people of the world, and far social distancing and segregated lifestyle have to be adopted as a common solution in recent years. To solve the problem of sanitation control and epidemic prevention in public places, in this paper, an intelligent disinfection control system based on the STM32 single-chip microprocessor was designed to realize intelligent closed-loop disinfection in local public places such as public toilets. The proposed system comprises seven modules: image acquisition, spraying control, disinfectant liquid level control, access control, voice broadcast, system display, and data storage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!