A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An efficient brain tumor detection and classification using pre-trained convolutional neural network models. | LitMetric

In cases of brain tumors, some brain cells experience abnormal and rapid growth, leading to the development of tumors. Brain tumors represent a significant source of illness affecting the brain. Magnetic Resonance Imaging (MRI) stands as a well-established and coherent diagnostic method for brain cancer detection. However, the resulting MRI scans produce a vast number of images, which require thorough examination by radiologists. Manual assessment of these images consumes considerable time and may result in inaccuracies in cancer detection. Recently, deep learning has emerged as a reliable tool for decision-making tasks across various domains, including finance, medicine, cybersecurity, agriculture, and forensics. In the context of brain cancer diagnosis, Deep Learning and Machine Learning algorithms applied to MRI data enable rapid prognosis. However, achieving higher accuracy is crucial for providing appropriate treatment to patients and facilitating prompt decision-making by radiologists. To address this, we propose the use of Convolutional Neural Networks (CNN) for brain tumor detection. Our approach utilizes a dataset consisting of two classes: three representing different tumor types and one representing non-tumor samples. We present a model that leverages pre-trained CNNs to categorize brain cancer cases. Additionally, data augmentation techniques are employed to augment the dataset size. The effectiveness of our proposed CNN model is evaluated through various metrics, including validation loss, confusion matrix, and overall loss. The proposed approach employing ResNet50 and EfficientNet demonstrated higher levels of accuracy, precision, and recall in detecting brain tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11401085PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e36773DOI Listing

Publication Analysis

Top Keywords

brain tumors
12
brain cancer
12
brain
9
brain tumor
8
tumor detection
8
convolutional neural
8
tumors brain
8
cancer detection
8
deep learning
8
efficient brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!