This study aimed to fabricate a dual-phase (DP) steel with a combination of high strength-ductility-toughness by thermomechanical processing for industrial applications. Accordingly, the effects of 40 % cold deformation and intercritical annealing temperature on the microstructural evolution and tensile properties of low-carbon steel were studied. The microstructure of dual-phase steels consisted of ferrite (α) and martensite (α'), however, the morphology of martensite was different. With increasing the intercritical annealing temperature, the martensite fraction increased gradually from 0.41 at 770 °C to 0.51 at 860 °C. Also, the increase of martensite fraction from 0.41 to 0.51 caused a decrease in the martensite carbon concentration from 0.174 to 0.142 wt%. All dual-phase steels had a larger hardness than the as-received steel. When the temperature of annealing increased from 770 °C to 860 °C, the yield strength enhanced from 370.4 to 496.3 MPa, the ultimate tensile strength improved from 642.0 to 809.2 MPa, the total elongation decreased slightly from 31.8 % to 29.8 %, and the energy absorption increased from 190.0 to 217.6 J/cm. The work hardening rate of all DP samples was considerably higher than other samples. Unlike initial, quenched, and rolled samples, the DP steels exhibited three-stage strain hardening behavior with increasing the true strain. For all dual-phase steels, a perfect ductile fracture was observed, with numerous uniform deep and coarse dimples. The dominant mechanism in the fabricated dual-phase steels was interface decohesion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402451 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e36704 | DOI Listing |
Materials (Basel)
January 2025
School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
To reveal the microstructural evolution and stress-strain distribution of 780 MPa-grade ferrite/martensite dual-phase steel during a uniaxial tensile deformation process, the plastic deformation behavior under uniaxial tension was studied using in situ EBSD and crystal plastic finite element method (CPFEM). The results showed that the geometrically necessary dislocations (GND) in ferrite accumulated continuously, which is conducive to the formation of grain boundaries, but the texture distribution did not change significantly. The average misorientation angle decreased and the proportion of low-angle grain boundaries increased with the increase of strain.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Research Institute for Special Steel Research, Central Iron and Steel Research Institute Company Limited, Beijing 100081, China.
High-energy structural materials (ESMs) integrate a high energy density with rapid energy release, offering promising applications in advanced technologies. In this study, a novel dual-phase TiZrWMo high-entropy alloy (HEA) was synthesized and evaluated as a potential ESM. The alloy exhibited a body-centered cubic (BCC) matrix with Mo-W-rich BCC precipitates of varying sizes, which increased proportionally with the W content.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Technology and Materials Engineering, Technical University of Košice, Mäsiarska 74, 040 01 Košice, Slovakia.
Friction is an unfavourable phenomenon in deep-drawing forming processes because it hinders the deformation processes and causes deterioration of the surface quality of drawpieces. One way to reduce the unfavourable effect of friction in deep-drawing processes is to use lubricants with the addition of hard particles. For this reason, this article presents the results of friction tests of dual-phase HCT600X+Z steel sheets using the flat die strip drawing test.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Engineering Technology, Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic.
Stress-strain curves are generally a very important material characteristic. For example, in numerical simulations, especially in sheet metal forming, stress-strain curves represent one of the most important data inputs. However, there is quite a wide range of parameters that influence their outline under the chosen technological conditions and, therefore, must always be taken into account.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Mechanical Engineering Fundamentals, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland.
Lowering passenger vehicle weight is a major contributor to improving fuel consumption and reducing greenhouse gas emissions. One fundamental method to achieving lighter cars is to replace heavy materials with lighter ones while still ensuring the required strength, durability, and ride comfort. Currently, there is increasing interest in hybrid structures obtained through adhesive bonding of high-performance fiber-reinforced polymers (FRPs) to high-strength steel sheets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!