Background: Three-dimensional (3D) magnetic resonance imaging (MRI) can be acquired with a high spatial resolution with flexibility being reformatted into arbitrary planes, but at the cost of reduced signal-to-noise ratio. Deep-learning methods are promising for denoising in MRI. However, the existing 3D denoising convolutional neural networks (CNNs) rely on either a multi-channel two-dimensional (2D) network or a single-channel 3D network with limited ability to extract high dimensional features. We aim to develop a deep learning approach based on multi-channel 3D convolution to utilize inherent noise information embedded in multiple number of excitation (NEX) acquisition for denoising 3D fast spin echo (FSE) MRI.
Methods: A multi-channel 3D CNN is developed for denoising multi-NEX 3D FSE magnetic resonance (MR) images based on the feature extraction of 3D noise distributions embedded in 2-NEX 3D MRI. The performance of the proposed approach was compared to several state-of-the-art MRI denoising methods on both synthetic and real knee data using 2D and 3D metrics of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).
Results: The proposed method achieved improved denoising performance compared to the current state-of-the-art denoising methods in both slice-by-slice 2D and volumetric 3D metrics of PSNR and SSIM.
Conclusions: A multi-channel 3D CNN is developed for denoising of multi-NEX 3D FSE MR images. The superior performance of the proposed multi-channel 3D CNN in denoising multi-NEX 3D MRI demonstrates its potential in tasks that require the extraction of high-dimensional features.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11400662 | PMC |
http://dx.doi.org/10.21037/qims-24-625 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!