A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimization of motion-corrected liver diffusion-weighted imaging at 3 Tesla (3T): incorporating complex averaging and reparametrized sinc fatsat pulse with optimized water excitation pulse. | LitMetric

Background: In liver diffusion-weighted imaging (DWI), single-shot echo-planar imaging (SS-EPI) sequences are susceptible to motion artifacts, resulting in image blurring and decreased lesion detection rates. This study aimed to develop and optimize a motion-corrected (MOCO) technique for liver DWI at 3 Tesla (3T). The technique incorporates motion correction, complex averaging, and a combination of a reparametrized sinc fatsat pulse with an optimized water excitation pulse.

Methods: This prospective cross-sectional study performed at Fujian Medical University Union Hospital included 42 healthy volunteers who underwent four SS-EPI DWI sequences on a 3T magnetic resonance imaging (MRI) system between January 2023 and March 2023. The sequences included a navigator-triggered (NT) MOCO-DWI, two free-breathing (FB) MOCO-DWI, and an FB conventional DWI (FB cDWI) sequence. Motion correction and complex averaging were performed for both MOCO-DWI sequences, and fat suppression was achieved using either a sinc fatsat pulse with optimized water excitation or a conventional spectral attenuated inversion recovery (SPAIR) pulse. Liver signal-to-noise ratio (SNR) was measured at b=1,000 s/mm. Qualitative parameters were independently evaluated by three radiologists using 5-point Likert scales. Quantitative parameters were assessed using the Kolmogorov-Smirnov test, and variance homogeneity was assessed using Levene's test. Regarding the qualitative analysis, the Friedman test was used to compare subjective scores among the four techniques.

Results: The SNRs of the liver were significantly higher with FB MOCO-DWI compared to the other EPI DWI sequences at b=1,000 s/mm (P<0.05). In the superior-inferior direction, the SNRs of the inferior level of the liver were higher than those of the superior level in NT MOCO-DWI. The qualitative results showed significantly higher ratings for NT MOCO-DWI and FB MOCO-DWI compared to the other EPI DWI sequences at b=1,000 s/mm (P<0.05). Regarding the apparent diffusion coefficient (ADC) quantification, the ADC values of the left lobe were higher than those of the right lobe in all four techniques.

Conclusions: The proposed EPI DWI technique, incorporating motion correction, complex averaging, and a modified fat suppression scheme using spectral fat saturation and binomial water excitation, was found to be clinically feasible for liver MRI. The FB MOCO-DWI sequence, with its superior SNR and excellent image quality, is recommended for liver DW imaging at 3T in clinical routine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11400668PMC
http://dx.doi.org/10.21037/qims-24-340DOI Listing

Publication Analysis

Top Keywords

complex averaging
12
sinc fatsat
12
fatsat pulse
12
pulse optimized
12
optimized water
12
water excitation
12
liver diffusion-weighted
8
diffusion-weighted imaging
8
reparametrized sinc
8
motion correction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!