A comprehensive investigation of geothermal reservoirs is essential to optimize geothermal energy production and move toward a more sustainable energy future. Various analysis methods and tools have been developed to estimate reservoir conditions and reservoir structures based on geophysical surveys, well data, and other measurement data. In the case of real field data, the actual subsurface structure is unknown, making it difficult to verify the validity of the methods and tools each develops. This data article classifies Japanese geothermal reservoirs and selects two representative structures, which can be representative models for many geothermal fields. Numerical simulations are used to calculate natural conditions and obtain simulated observation data. This paper outlines the methodology employed to construct the reservoir models and to conduct the reservoir simulation. It also describes the approach used to generate resistivity data. The datasets include important reservoir configuration parameters such as rock type, porosity, permeability, rock density, thermal conductivity, and specific heat. It also includes temperature, pressure, and resistivity maps that represent pseudo-geophysical exploration and well data. This comprehensive data set is a valuable resource for further research and analysis in the field of geothermal energy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395732 | PMC |
http://dx.doi.org/10.1016/j.dib.2024.110828 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!