Lichens are symbiotic organisms comprised of mycobionts and photobiont partners. They are known to produce bioactive secondary metabolites and most of these are biosynthesized by mycobionts. Investigations of cultures of isolated lichen-associated fungi have shown promise for the discovery of cytotoxic compounds. Thus, the lichen-associated fungus was studied for its potential to produce novel compounds and the new sterols (20*)-hydroxy-24(28)-dehydrocampesterol (), 7α-methoxy-8β-hydroxypaxisterol (), 14--epicoccarine A () and 14--epicoccarine B (), as well as the known compound PF1140 (), were isolated. The structures of these compounds were elucidated using methods including nuclear magnetic resonance (NMR) spectroscopy and high-resolution electrospray ionization mass spectrometry (HRESIMS). Following cytotoxicity assays, compound demonstrated activity against the pancreatic adenocarcinoma epithelial HPAC cell line at 17.76 ± 5.35 μM. Since the structures of compounds and were very similar to tetramic acid derivatives that were reported to be biosynthesized from a polyketide synthase- non-ribosomal peptide synthetase (PKS-NRPS) hybrid pathway, a plausible biosynthetic route for production in is proposed herein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391924 | PMC |
http://dx.doi.org/10.1016/j.phytol.2024.08.008 | DOI Listing |
J Agric Food Chem
January 2025
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.
View Article and Find Full Text PDFBot Stud
January 2025
Institute of Fisheries Science, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist, Taipei, 106319, Taiwan (R.O.C.).
Background: Trichoderma species, known as biocontrol agents against plant diseases, contain diverse compounds, especially terpenoids, with various bioactivities. To facilitate the exploration of bioactive secondary metabolites of Trichoderma harzianum NTU2180, the OSMAC approach MS/MS molecular networking was applied in the current study.
Results: The feature-based molecular networking (FBMN) analysis showed that T.
FEMS Microbiol Ecol
January 2025
Ecology and Genetics Research Unit, PO Box 3000, University of Oulu, FI-90014 Oulu, Finland.
The physical and chemical properties of wild berry fruits change dramatically during development, and the ripe berries host species-specific endophytic communities. However, the development of fungal endophytic communities during berry ripening is unknown. We studied bilberries (Vaccinium myrtillus L.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
The photophysical properties of six new luminescent tetrahedral Zn(II) complexes are presented that survey two electronic donor moieties (phenolate and carbazolate) and three electronic acceptors (pyridine, pyrimidine, and pyrazine). A unique ligand based on an -terphenyl motif forms an eight-membered chelate, which enhances through-space charge-transfer (CT) interactions by limiting through-bond conjugation between the donor and acceptor. A single isomeric product was obtained in yields up to 90%.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
(±)-Melichuniiones A and B (1 and 2), two novel enantiomeric pairs of lignan-phloroglucinol hybrids with an unprecedented beadlike core were isolated from the leaves of , together with new analogues 3-6. Compounds 1 and 2 possess a unique dispiro [furan-2,5'-cyclopenta[]furan-2',3''-furan] 5/5/5/5 tetracyclic skeleton. Their structures were established by extensive spectroscopic analyses, single crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!