Liberties of the genome: insertions of mitochondrial DNA fragments into nuclear genome.

Vavilovskii Zhurnal Genet Selektsii

Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.

Published: September 2024

The transition of detached fragments of mitochondrial DNA into the nucleus and their integration into chromosomal DNA is a special kind of genetic variability that highlights the relation between the two genomes and their interaction in a eukaryotic cell. The human genome contains several hundreds of insertions of mtDNA fragments (NUMTS). This paper presents an overview of the current state of research in this area. To date, evidence has been obtained that the occurrence of new mtDNA insertions in the nuclear genome is a seldom but not exceptionally rare event. The integration of new mtDNA fragments into the nuclear genome occurs during double-strand DNA break repair through the non-homologous end joining mechanism. Along with evolutionarily stable "genetic fossils" that were integrated into the nuclear genome millions of years ago and are shared by many species, there are NUMTS that could be species-specific, polymorphic in a species, or "private". Partial copies of mitochondrial DNA in the human nuclear genome can interfere with mtDNA during experimental studies of the mitochondrial genome, such as genotyping, heteroplasmy assessment, mtDNA methylation analysis, and mtDNA copy number estimation. In some cases, the insertion of multiple copies of the complete mitochondrial genome sequence may mimic paternal inheritance of mtDNA. The functional significance of NUMTS is poorly understood. For instance, they may be a source of variability for expression and splicing modulation. The role of NUMTS as a cause of hereditary diseases is negligible, since only a few cases of diseases caused by NUMTS have been described so far. In addition, NUMTS can serve as markers for evolutionary genetic studies. Of particular interest is the meaning of NUMTS in eukaryotic genome evolution. The constant flow of functionally inactive DNA sequences from mitochondria into the nucleus and its significance could be studied in view of the modern concepts of evolutionary theory suggesting non-adaptive complexity and the key role of stochastic processes in the formation of genomic structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393654PMC
http://dx.doi.org/10.18699/vjgb-24-53DOI Listing

Publication Analysis

Top Keywords

nuclear genome
20
mitochondrial dna
12
genome
9
fragments nuclear
8
mtdna fragments
8
mitochondrial genome
8
mtdna
7
numts
7
dna
6
mitochondrial
5

Similar Publications

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Reciprocal and non-reciprocal effects of clinically relevant SETBP1 protein dosage changes.

Hum Mol Genet

January 2025

Department of Human Genetics, McGill University, 3666 McTavish Street, Montreal, QC H3A 1Y2, Canada.

Many genes in the human genome encode proteins that are dosage sensitive, meaning they require protein levels within a narrow range to properly execute function. To investigate if clinically relevant variation in protein levels impacts the same downstream pathways in human disease, we generated cell models of two SETBP1 syndromes: Schinzel-Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disease (SHD), where SGS is caused by too much protein, and SHD is caused by not enough SETBP1. Using patient and sex-matched healthy first-degree relatives from both SGS and SHD SETBP1 cases, we assessed how SETBP1 protein dosage affects downstream pathways in human forebrain progenitor cells.

View Article and Find Full Text PDF

Background: Low-grade glioma (LGG) is a primary brain tumor with relatively low malignancy. NCOA4 is a key regulator of ferritinophagy-related processes and is involved in the occurrence and development of many cancers. However, the role of NCOA4 in LGG remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!