The topic of diagnostic imaging error and the tools and strategies for error mitigation are poorly investigated in veterinary medicine. The increasing popularity of diagnostic imaging and the high demand for teleradiology make mitigating diagnostic imaging errors paramount in high-quality services. The different sources of error have been thoroughly investigated in human medicine, and the use of AI-based products is advocated as one of the most promising strategies for error mitigation. At present, AI is still an emerging technology in veterinary medicine and, as such, is raising increasing interest among in board-certified radiologists and general practitioners alike. In this perspective article, the role of AI in mitigating different types of errors, as classified in the human literature, is presented and discussed. Furthermore, some of the weaknesses specific to the veterinary world, such as the absence of a regulatory agency for admitting medical devices to the market, are also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392848 | PMC |
http://dx.doi.org/10.3389/fvets.2024.1437284 | DOI Listing |
Jpn J Radiol
January 2025
Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
Magnetic Resonance Imaging (MRI) safety is a critical concern in the Asia-Oceania region, as it is elsewhere in the world, due to the unique and complex MRI environment that demands attention. This call-for-action outlines ten critical steps to enhance MRI safety and promote a culture of responsibility and accountability in the Asia-Oceania region. Key focus areas include strengthening education and expertise, improving quality assurance, fostering collaboration, increasing public awareness, and establishing national safety boards.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFSleep Breath
January 2025
Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Dongcheng District, Beijing, 100730, PR China.
Purpose: To investigate the relationship between obstructive sleep apnea hypopnea syndrome (OSAHS) severity and fat, bone, and muscle indices.
Methods: This study included 102 patients with OSAHS and retrospectively reviewed their physical examination data. All patients underwent polysomnography, body composition analysis, dual-energy X-ray absorptiometry, computed tomography (CT) and blood test.
Ann Nucl Med
January 2025
Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China.
Objective: Using F-FDG PET/CT metabolic parameters to differentiate post-transplant lymphoproliferative disorder (PTLD) and reactive lymphoid hyperplasia (RLH), and PTLD subtypes.
Methods: F-FDG PET/CT and clinical data from 63 PTLD cases and 19 RLH cases were retrospectively collected. According to the 2017 WHO classification, PTLD was categorized into four subtypes: nondestructive (ND-PTLD), polymorphic (P-PTLD), monomorphic (M-PTLD), and classic Hodgkin.
Clin Oral Investig
January 2025
Department of Oral and Maxillofacial Surgery, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525, GA, the Netherlands.
Objectives: To assess the effect of patient positioning and general anesthesia on the condylar position in orthognathic surgery.
Materials And Methods: This prospective study included patients undergoing orthognathic surgery between 2019 and 2020. Four weeks prior to surgery (T0) cone-beam computed tomography (CBCT) scans and intra-oral scans (IOS) were acquired in an upright position.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!