Most of the existing image encryption algorithms encrypt images as meaningless cryptographic images, which can easily attract the attention of attackers during transmission. To address this problem, scholars have proposed to hide the cipher image in a meaningless carrier image. However, larger carrier images are often required, which occupy more bandwidth. In order to solve this problem, this paper realizes embedding the color secret image into the carrier image whose size is equal to or even smaller than the original image by combining the chaotic compressed sensing model. First of all, the original image is sparsely processed using discrete wavelet transform. Then the time varying delay chaotic model is used to generate pseudo random sequence and then the measurement matrix is constructed to compress and encrypt the image. In the end, using singular value decomposition to achieve image embedding, the carrier image carrying information is obtained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402256PMC
http://dx.doi.org/10.1016/j.isci.2024.110717DOI Listing

Publication Analysis

Top Keywords

carrier image
12
image
11
image encryption
8
original image
8
encryption hiding
4
hiding algorithm
4
algorithm based
4
based digital
4
digital time-varying
4
time-varying delay
4

Similar Publications

Carrier-Free, Hyaluronic Acid-Modified Self-Assembled Doxorubicin, and Chlorin e6 Nanoparticles Enhance Combined Chemo- and Photodynamic Therapy in vivo.

Int J Nanomedicine

January 2025

State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.

Background: Developing carrier-free nanomedicines via self-assembly of two antitumor drug molecules is a potential strategy for enhancing the combination treatment of tumors. Similarly, conventional chemotherapy combined with photodynamic therapy may synergistically improve the antitumor effect while minimizing the adverse reactions associated with antitumor treatment. Hyaluronic acid (HA) can bind to overexpressed HA receptors on the tumor cell surface, increasing cell internalization and resulting in good tumor-targeting properties.

View Article and Find Full Text PDF

Contributions of connectional pathways to shaping Alzheimer's disease pathologies.

Brain Commun

January 2025

Normandie Univ, UNICAEN, INSERM, U1237, PhIND 'Physiopathology and Imaging of Neurological Disorders', Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France.

Four important imaging biomarkers of Alzheimer's disease, namely grey matter atrophy, glucose hypometabolism and amyloid-β and tau deposition, follow stereotypical spatial distributions shaped by the brain network of structural and functional connections. In this case-control study, we combined several predictors reflecting various possible mechanisms of spreading through structural and functional pathways to predict the topography of the four biomarkers in amyloid-positive patients while controlling for the effect of spatial distance along the cortex. For each biomarker, we quantified the relative contribution of each predictor to the variance explained by the model.

View Article and Find Full Text PDF

Microelectronic Structure and Doping Nonuniformity of Phosphorus-Doped CdSeTe Solar Cells.

ACS Appl Mater Interfaces

January 2025

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

Optimizing group-V doping and Se alloying are two main focuses for advancing CdTe photovoltaic technology. We report on nanometer-scale characterizations of microelectronic structures of phosphorus (P)-doped CdSeTe devices using a combination of two atomic force microscopy-based techniques, namely, Kelvin probe force microscopy (KPFM) and scanning spreading resistance microscopy (SSRM). KPFM on device cross-section images distribution of the potential drop across the device.

View Article and Find Full Text PDF

In this study, a magnetic carboxymethylated β-cyclodextrin (Mag/CM-β-CD) was developed as a carrier system to assess its capability on drug delivery application by forming an inclusion complex with amantadine (Amn) as a drug model. The synthesized inclusion complex (Mag/CM-β-CD/Amn) was analyzed using various techniques, including FT-IR, XRD, BET, TGA, TEM, VSM, and DLS. The encapsulation efficiency and drug release study of Mag/CM-β-CD/Amn were adopted using the spectroscopic method.

View Article and Find Full Text PDF

Substantia nigra degeneration in spinocerebellar ataxia 2 and 7 using neuromelanin-sensitive imaging.

Eur J Neurol

January 2025

Institut du Cerveau-Paris Brain Institute ICM, Sorbonne Université, Inserm 1127, CNRS 7225, Hôpital de la Pitié Salpêtrière Paris, Paris, France.

Objective: Spinocerebellar ataxias (SCA) are neurodegenerative diseases with widespread lesions across the central nervous system. Ataxia and spasticity are usually predominant, but patients may also present with parkinsonism. We aimed to characterize substantia nigra pars compacta (SNc) degeneration in SCA2 and 7 using neuromelanin-sensitive imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!