A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A traveling surface acoustic wave-based micropiezoactuator: A tool for additive- and label-free cell lysis. | LitMetric

We propose a traveling surface acoustic wave (TSAW)-based microfluidic method for cell lysis that enables lysis of any biological entity, without the need for additional additives. Lysis of cells in the sample solution flowing through a poly (dimethyl siloxane) microchannel is enabled by the interaction of cells with TSAWs propagated from gold interdigitated transducers (IDTs) patterned onto a LiNbO piezoelectric substrate, onto which the microchannel was also bonded. Numerical simulations to determine the wave propagation intensities with varying parameters including IDT design, supply voltage, and distance of the channel from the IDT were performed. Experiments were then used to validate the simulations and the best lysis parameters were used to maximize the nucleic acid/protein extraction efficiency (>95%) within few seconds. A comparative analysis of our method with traditional chemical, physical and thermal, as well as the current microfluidic methods for lysis demonstrates the superiority of our method. Our lysis strategy can hence be used independently and/or integrated with other nucleic acid-based technologies or point-of-care devices for the lysis of any pathogen (Gram positives and negatives), eukaryotic cells, and tissues at low voltage (3 V) and frequency (33.17 MHz), without the use of amplifiers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392560PMC
http://dx.doi.org/10.1063/5.0209663DOI Listing

Publication Analysis

Top Keywords

traveling surface
8
surface acoustic
8
lysis
8
cell lysis
8
acoustic wave-based
4
wave-based micropiezoactuator
4
micropiezoactuator tool
4
tool additive-
4
additive- label-free
4
label-free cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!