Bacterial infections and long-term inflammation cause serious secondary damage to chronic diabetic wounds and hinder the wound healing processes. Currently, multifunctional hydrogels have shown promising effects in chronic wound repair. However, traditional hydrogels only keep the wound moist and protect it from bacterial infection, and cannot provide mechanical force to contract the wound edges to achieve facilitated wound closure. Here, an asymmetric composite dressing was created by combining biaxially oriented nanofibers and hydrogel, inspired by the double-layer structure of the traditional Chinese medicinal plaster patch, for managing chronic wounds. Specifically, electrospun Poly-(lactic acid-co-trimethylene carbonate) (PLATMC) nanofibers and methacrylate gelatin (GelMa) hydrogel loaded with Epinecidin-1@chitosan (Epi-1@CS) nanoparticles are assembled as the temperature-responsive self-contracting nanofiber/hydrogel (TSNH) composite dressing. The substrate layer of PLATMC nanofibers combines topological morphology with material properties to drive wound closure through temperature-triggered contraction force. The functional layer of GelMa hydrogel is loaded with Epi-1@CS nanoparticles that combine satisfactory cytocompatibility, and antioxidant, anti-inflammatory, and antibacterial properties. Strikingly, , the TSNH dressing could regulate the diabetic wound microenvironment, thereby promoting collagen deposition, facilitating angiogenesis, and reducing the inflammatory response, which promotes the rapid healing of chronic wounds. This study highlights the potential of synergizing mechanical and biochemical signals in enhancing chronic wound treatment. Overall, this TSNH composite dressing is provided as a reliable approach to solving the long-standing problem of chronically infected wound healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402428 | PMC |
http://dx.doi.org/10.1016/j.mtbio.2024.101214 | DOI Listing |
Sci Rep
January 2025
Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
Maintaining a diverse and balanced sow milk microbiome is essential to piglet development. Thus, this study aimed to examine the effects of probiotic Bacillus licheniformis supplementation on the microbiome composition of sow colostrum and milk, and to review associated health findings in piglets. B.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States.
Tissue repair is often impaired in pathological states, highlighting the need for innovative wound-healing technologies. This study introduces composite hyaluronic acid gas-entrapping materials (GEMs) delivering carbon monoxide (CO) to promote wound healing in pigs. These composite materials facilitate burst release followed by sustained release of CO over 48 h.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China. Electronic address:
Sonodynamic therapy is an emerging therapeutic approach for combating bacterial infections. However, the characteristics of hypoxia, high HO microenvironment, and the formation of persistent biofilms in diabetic wound sites limit its efficacy in this field. To address these issues, we developed a multifunctional antibacterial hydrogel dressing PPCN@Pt-AMPs/HGel with the cross-linked gelatin and sodium alginate as the matrix, where the nanosonosensitizer PCN-224 was decorated with the oxygen-generating Pt nanoenzyme and further coupled with a biofilm-targeting antimicrobial peptide via an interacting polydopamine layer.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China. Electronic address:
Full-thickness skin wounds remian a significant and pressing challenge. In this study, we introduce a novel composite hydrogel, CS + GA + Zn-HA. This hydrogel is formulated by incorporating 1 % (1 g/100 mL) of bioactive Zinc-substituted hydroxyapatite nanoparticles (Zn-HA) and 0.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Division of Colorectal Surgery, Department of Surgery, Tehran University of medical sciences, Tehran, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!