The Karner blue butterfly, () , is an endangered North American climate change-vulnerable species that has undergone substantial historical habitat loss and population decline. To better understand the species' genetic status and support Karner blue conservation, we sampled 116 individuals from 22 localities across the species' geographical range in Wisconsin (WI), Michigan (MI), Indiana (IN), and New York (NY). Using genomic analysis, we found that these samples were divided into three major geographic groups, NY, WI, and MI-IN, with populations in WI and MI-IN each further divided into three subgroups. A high level of inbreeding was revealed by inbreeding coefficients above 10% in almost all populations in our study. However, strong correlation between and geographical distance suggested that genetic divergence between populations increases with distance, such that introducing individuals from more distant populations may be a useful strategy for increasing population-level diversity and preserving the species. We also found that Karner blue populations had lower genetic diversity than closely related species and had more alleles that were present only at low frequencies (<5%) in other species. Some of these alleles may negatively impact individual fitness and may have become prevalent in Karner blue populations due to inbreeding. Finally, analysis of these possibly deleterious alleles in the context of predicted three-dimensional structures of proteins revealed potential molecular mechanisms behind population declines, providing insights for conservation. This rich new range-wide understanding of the species' population genomic structure can contextualize past extirpations and help conserve and even enhance Karner blue genetic diversity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392825PMC
http://dx.doi.org/10.1002/ece3.70044DOI Listing

Publication Analysis

Top Keywords

karner blue
16
blue butterfly
8
divided three
8
populations
5
range-wide population
4
population genomic
4
genomic structure
4
karner
4
structure karner
4
blue
4

Similar Publications

The Karner blue butterfly, () , is an endangered North American climate change-vulnerable species that has undergone substantial historical habitat loss and population decline. To better understand the species' genetic status and support Karner blue conservation, we sampled 116 individuals from 22 localities across the species' geographical range in Wisconsin (WI), Michigan (MI), Indiana (IN), and New York (NY). Using genomic analysis, we found that these samples were divided into three major geographic groups, NY, WI, and MI-IN, with populations in WI and MI-IN each further divided into three subgroups.

View Article and Find Full Text PDF

The Karner blue butterfly (Lycaeides melissa samuelis, or Kbb), a federally endangered species under the U.S. Endangered Species Act in decline due to habitat loss, can be further threatened by climate change.

View Article and Find Full Text PDF

The increase in antibiotic resistance represents a major global challenge for our health systems and calls for alternative treatment options, such as antimicrobial light-based therapies. Blue light has shown promising results regarding the inactivation of a variety of microorganisms; however, most often, antimicrobial blue light (aBL) therapy is performed using wavelengths close to the UV range. Here we investigated whether inactivation was possible using blue light with a wavelength of 475 nm.

View Article and Find Full Text PDF

Small habitat patches can be important reservoirs for biodiversity, capable of hosting unique species that are largely absent from the surrounding landscape. In cases where such patches owe their existence to the presence of particular soil types or hydrologic conditions, local-scale edaphic variables may be more effective components for models that identify patch location than regional-scale macroclimatic variables often used in habitat and species distribution models. We modeled the edaphic soil conditions that support pine barren, sandplain, and related ecosystems in New York State with the purpose of identifying potential locations for biodiversity conservation.

View Article and Find Full Text PDF

Rapidly evolving multidrug resistance renders conventional antimicrobial strategies increasingly inefficient. This urges the exploration of alternative strategies with a lower potential of resistance development to control microbial infections. A promising option is antimicrobial photodynamic therapy (aPDT), especially in the setting of wound infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!