AI Article Synopsis

  • Carvone and limonene are natural scents used in perfumes, but they don't last long due to being unstable.
  • Scientists created special structures called inclusion complexes to keep these scents stable and make them last longer when heated.
  • The study found that these complexes work well at different temperatures, which could help use carvone and limonene in more products.

Article Abstract

Background: Carvone and limonene are naturally occurring monoterpenoids with unique aromas, making them valuable substances in synthetic fragrance production. However, their application is limited due to low stability and rapid volatilization. To address this challenge, host-guest complexes offer a promising solution.

Results: In this study, two acyclic cucurbit[n]urils were synthesized to form inclusion complexes with carvone and limonene, aiming to enhance their thermal stability and achieve excellent heat release properties. The binding behavior of the complexes was investigated using NMR, X-ray diffraction (XRD), Fourier transform infrared (FTIR) and molecular bonding analyses, confirming the formation of host-guest inclusion complexes.

Conclusion: Our study successfully prepared four inclusion complexes (M1/CA, M2/CA, M1/LI, M2/LI) and characterized them using NMR, XRD and FTIR techniques. These complexes exhibited a 1:1 stoichiometric ratio, and their binding constants were determined through fluorescence titration. The thermal controlled release experiment shows that the degree of carvone and limonene release is different with a change of temperature, indicating that the inclusion complexes have good thermally controlled release performance, and the thermal release retention rate has a certain correlation with K value. The larger the K value, the higher the thermal release retention rate of the inclusion complexes, the lower the volatilization of the inclusion complexes, the longer the retention time and the better the thermal stability. This study presents a novel approach for developing carvone- and limonene-based fragrances, expanding their application potential in various industries. © 2024 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.13864DOI Listing

Publication Analysis

Top Keywords

inclusion complexes
24
carvone limonene
16
complexes
9
heat release
8
acyclic cucurbit[n]urils
8
thermal stability
8
controlled release
8
thermal release
8
release retention
8
retention rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!