We report the integration of 3D printing, electrobiofabrication, and protein engineering to create a device that enables near real-time analysis of monoclonal antibody (mAb) titer and quality. 3D printing was used to create the macroscale architecture that can control fluidic contact of a sample with multiple electrodes for replicate measurements. An analysis "chip" was configured as a "snap-in" module for connecting to a 3D printed housing containing fluidic and electronic communication systems. Electrobiofabrication was used to functionalize each electrode by the assembly of a hydrogel interface containing biomolecular recognition and capture proteins. Specifically, an electrochemical thiol oxidation is used to assemble a thiolated polyethylene glycol hydrogel, that in turn is covalently coupled to either a cysteine-tagged protein G that binds the antibody's Fc region or a lectin that binds the glycans of target mAb analytes. We first show the design, assembly, and testing of the hardware device. Then, we show the transition of a step-by-step sensing methodology (e.g., mix, incubate, wash, mix, incubate, wash, measure) into the current method where functionalization, antibody capture, and assessment are performed in situ and in parallel channels. Both titer and glycan analyses were found to be linear with antibody concentration (to 0.2 mg/L). We further found the interfaces could be reused with remarkably similar results. Because the interface assembly and use are simple, rapid, and robust, we suggest this assessment methodology will be widely applicable, including for other biomolecular process development and manufacturing environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.28839 | DOI Listing |
Ultrasound localization microscopy (ULM) enables microvascular imaging at spatial resolutions beyond the acoustic diffraction limit, offering significant clinical potentials. However, ULM performance relies heavily on microbubble (MB) signal sparsity, the number of detected MBs, and signal-to-noise ratio (SNR), all of which vary in clinical scenarios involving bolus MB injections. These sources of variations underscore the need to optimize MB dosage, data acquisition timing, and imaging settings in order to standardize and optimize ULM of microvasculature.
View Article and Find Full Text PDFEClinicalMedicine
August 2024
Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, United Kingdom.
Background: Predicting dementia early has major implications for clinical management and patient outcomes. Yet, we still lack sensitive tools for stratifying patients early, resulting in patients being undiagnosed or wrongly diagnosed. Despite rapid expansion in machine learning models for dementia prediction, limited model interpretability and generalizability impede translation to the clinic.
View Article and Find Full Text PDFSmall
January 2025
National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
Owing to its abundant manganese source, high operating voltage, and good ionic diffusivity attributed to its 3D Li-ion diffusion channels. Spinel LiMnO is considered a promising low-cost positive electrode material in the context of reducing scarce elements such as cobalt and nickel from advanced lithium-ion batteries. However, the rapid capacity degradation and inadequate rate capabilities induced by the Jahn-Teller distortion and the manganese dissolution have limited the large-scale adoption of spinel LiMnO for decades.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Developmental and Cell Biology, University of California, Irvine, CA, USA.
Functional analysis of non-coding variants associated with congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice in less than two weeks. We use this technology to examine and measure the gain- and loss-of-function effects of enhancer variants previously linked to limb polydactyly, autism spectrum disorder, and craniofacial malformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!