Tailoring Pseudo-Graphitic Domain by Molybdenum Modification to Boost Sodium Storage Capacity and Durability for Hard Carbon.

Small

Department of Materials Physics and Chemistry, School of Materials Science & Engineering, Central South University, Changsha, Hunan, 410083, China.

Published: November 2024

Hard carbon (HC) stands out as the most prospective anode for sodium-ion batteries (SIBs) with significant potential for commercial applications. However, some long-standing and intractable obstacles, like low first coulombic efficiency (ICE), poor rate capability, storage capacity, and cycling stability, have severely hindered the conversion process from laboratory to commercialization. The above-mentioned issues are closely related to Na transfer kinetics, surface chemistry, and internal pseudo-graphitic carbon content. Herein, constructing molybdenum-modified hard carbon solid spheres (MoC/HC-5.0), both the ion transfer kinetics, surface chemistry, and internal pseudo-graphitic carbon content are comprehensively improved. Specifically, MoC/HC-5.0 with higher pseudo-graphitic carbon content provides a large number of active sites and a more stable layer structure, resulting in improved sodium storage capacity, rate performance, and cycling stability. Moreover, the lower defect density and specific surface area of MoC/HC-5.0 further enhance ICE and sodium storage capacity. Consequently, the MoC/HC-5.0 anode achieves a high capacity of 410.7 mA h g and an ICE of 83.9% at 50 mA g. Furthermore, the material exhibits exceptional rate capability and cycling stability, maintaining a capacity of 202.8 mA h g at 2 A g and 214.9 mA h g after 800 cycles at 1 A g.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202405921DOI Listing

Publication Analysis

Top Keywords

storage capacity
16
sodium storage
12
hard carbon
12
cycling stability
12
pseudo-graphitic carbon
12
carbon content
12
rate capability
8
transfer kinetics
8
kinetics surface
8
surface chemistry
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!