Characterizing human KIF1Bβ motor activity by single-molecule motility assays and Caenorhabditis elegans genetics.

J Cell Sci

Graduate School of Life Sciences , Tohoku University, Katahira 2-1, Aoba-ku, Sendai, Miyagi 980-8578, Japan.

Published: October 2024

The axonal transport of synaptic vesicle precursors relies on KIF1A and UNC-104 ortholog motors. In mammals, KIF1Bβ is also responsible for the axonal transport of synaptic vesicle precursors. Mutations in KIF1A and KIF1Bβ lead to a wide range of neuropathies. Although previous studies have revealed the biochemical, biophysical and cell biological properties of KIF1A, and its defects in neurological disorders, the fundamental properties of KIF1Bβ remain elusive. In this study, we determined the motile parameters of KIF1Bβ through single-molecule motility assays. We found that the C-terminal region of KIF1Bβ has an inhibitory role in motor activity. AlphaFold2 prediction suggests that the C-terminal region blocks the motor domain. Additionally, we established simple methods for testing the axonal transport activity of human KIF1Bβ using Caenorhabditis elegans genetics. Taking advantage of these methods, we demonstrated that these assays enable the detection of reduced KIF1Bβ activities, both in vitro and in vivo, caused by a Charcot-Marie-Tooth disease-associated Q98L mutation.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.261783DOI Listing

Publication Analysis

Top Keywords

axonal transport
12
kif1bβ
8
human kif1bβ
8
motor activity
8
single-molecule motility
8
motility assays
8
caenorhabditis elegans
8
elegans genetics
8
transport synaptic
8
synaptic vesicle
8

Similar Publications

The Trail of axonal protein Synthesis: Origins and current functional Landscapes.

Neuroscience

January 2025

Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay. Electronic address:

Local protein synthesis (LPS) in axons is now recognized as a physiological process, participating both in the maintenance of axonal function and diverse plastic phenomena. In the last decades of the 20th century, the existence and function of axonal LPS were topics of significant debate. Very early, axonal LPS was thought not to occur at all and was later accepted to play roles only during development or in response to specific conditions.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Background: Despite recent FDA approvement of disease-modifying treatments that reduce Aβ, the identification of novel therapeutic strategies that could delay the Alzheimer's disease (AD) development are needed. We identified and developed novel small molecule compounds that mildly inhibit mitochondrial complex I (MCI). Chronic treatment with a tool compound CP2 in 4 mouse models of familial AD was efficacious protecting against synaptic dysfunction and memory impairment, improving brain energetics and cognitive performance, reducing levels of human pTau and Ab.

View Article and Find Full Text PDF

Background: Chemotherapy-induced cognitive impairment (CICI) is a commonly reported neurotoxic side effect of chemotherapy, occurring in up to 75% cancer patients. Connections between chemo-treatment and increased risk of dementia have been reported. Mechanistically, chemotherapy treatment contributes to an accelerated aging phenotype in the brain through induction of pathogenic tau, disruption of neuronal integrity, reactive gliosis and neuroinflammation.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is characterized by neocortical dissemination of neurofibrillary tangles (NFTs) while primary age-related tauopathy (PART) has NFTs largely confined to the hippocampus and adjacent structures. Thus, PART and AD represent two extremes of a spectrum of NFT spread. We investigated epigenetic mechanisms of interindividual variation in NFT spread.

View Article and Find Full Text PDF

The role of RGC degeneration in the pathogenesis of glaucoma.

Int J Biol Sci

January 2025

Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun 130000, Jilin, China.

Glaucoma is a neurodegenerative disorder marked by the loss of retinal ganglion cells (RGCs) and axonal degeneration, resulting in irreversible vision impairment. While intraocular pressure (IOP) is presently acknowledged as the sole modifiable risk factor, the sensitivity of RGCs to IOP varies among individuals. Consequently, progressive vision loss may ensue even when IOP is effectively managed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!