Borophene, with its unique properties such as excellent conductivity, high thermal stability, and tunable electronic band structure, holds immense promise for advancing photodetector technology. These qualities make it an attractive material for enhancing the efficiency and performance of photodetectors across various wavelengths. Research so far has highlighted borophene's potential in improving sensitivity, response time, and overall functionality in optoelectronic devices. However, to fully realize the potential of borophene-based photodetectors, several challenges must be addressed. A major hurdle is the reproducibility and scalability of borophene synthesis, which is essential for its widespread use in practical applications. Furthermore, understanding the underlying physics of borophene and optimizing the device architecture are critical for achieving consistent performance under different operating conditions. These challenges must be overcome to enable the effective integration of borophene into commercial photodetector devices. A thorough evaluation of borophene-based photodetectors is necessary to guide future research and development in this field. This review will provide a detailed account of the current synthesis methods, discuss the experimental results, and identify the challenges that need to be addressed. Additionally, the review will explore potential strategies to overcome these obstacles, paving the way for significant advancements in solar cells, light-based sensors, and environmental monitoring systems. By addressing these issues, the development of borophene-based photodetectors could lead to substantial improvements in optoelectronic technology, benefiting various applications and industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr02638a | DOI Listing |
Nanoscale
October 2024
Department of Physics, School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.
Borophene, with its unique properties such as excellent conductivity, high thermal stability, and tunable electronic band structure, holds immense promise for advancing photodetector technology. These qualities make it an attractive material for enhancing the efficiency and performance of photodetectors across various wavelengths. Research so far has highlighted borophene's potential in improving sensitivity, response time, and overall functionality in optoelectronic devices.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2021
The State Key Laboratory of Mechanics and Control of Mechanical Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
The emergence of borophene has triggered soaring interest in the investigation of its superior structural anisotropy, a novel photoelectronic property for diverse potential applications. However, the structural instability and need of a metal substrate for depositing borophene restrict its large-scale applications toward high-performance electronic and optoelectric devices. van der Waals epitaxy is regarded as an efficient technique for growing superb two-dimensional materials onto extensive functional substrates, but the preparation of stable and controllable borophene on nonmetallic substrates is still not reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!