Tea polyphenols have a regulatory effect on metabolic-related diseases, however, the underlying mechanism remains elusive. Our study aims to explore the dietary intervention effect of Epigallocatechin gallate (EGCG), the major polyphenol in green tea, on obesity and intestinal barrier disorders in mice fed a high-fat diet. By supplementing with 50 mg kg EGCG, we observed a significant amelioration in body weight gain, fat accumulation, and liver dysfunction. Furthermore, EGCG modulated the HFD-induced metabolomic alterations. In particular, EGCG intervention restored the ileal barrier by enhancing the expression of tight junction proteins and antimicrobial peptides. At the mechanistic level, EGCG treatment stabilized hypoxia-inducible factor 1α (HIF1α) both and . Meanwhile, EGCG significantly increased the abundance of and , along with the elevated SCFA contents. These findings suggest that the ability of EGCG to stabilize HIF1α and regulate specific gut microbes is pivotal in mitigating ileal barrier dysfunction and obesity. Moreover, serum metabolomics revealed potential biomarkers following EGCG intervention. This study supports the intake of EGCG or green tea in obesity management and offers a novel perspective for investigating the metabolic regulatory mechanism of other dietary polyphenols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4fo02283a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!