Highly unsaturated fatty acids (HUFAs) are vulnerable to oxygen attack, thus making HUFA-rich, high metabolic rate/reactive oxygen species (ROS)-generating neurological tissue particularly susceptible to increased oxidative stress. Lipid oxidation is a putative early stage marker of neurodegenerative diseases, suggesting that reliable monitoring of oxidized neural lipids reveals early pathogenesis. Here, we present a novel methodology to detect and quantify intact ROS-driven peroxidized phospholipids (LPOx-PLs) in bovine retina extract. A protocol for preparing autoxidized pure phospholipids (PLs) and complex retinal extracts served as reference standards and was adapted to enable analytical parameter development. Fatty acid profiles of bovine retinas were first established with routine gas chromatography (GC) methods and used to customize mass spectrometry scanning for major HUFA-carrying PLs in the retinal extract. Targeted multiple reaction monitoring (MRM) scanning via triple quadrupole tandem mass spectrometry detected native (unoxidized) and oxidation-damaged PL regardless of the position of the O or O addition along the acyl chains and enabled quantification of relative signals from intact native and oxidized PL (5%-10% CV). MRM-triggered information-dependent acquisition (IDA) spectra confirmed the structure of peroxidized PLs, revealing that peroxidized species (+O-OH) dominated over single O-added species and . Positive identification and relative quantification are reported for 12 selected native and peroxidized phosphatidylcholines and phosphatidylethanolamines. These results enable future studies of the initial peroxidation due to toxins, genetics, or other initiating events influencing oxidation levels and potentially the effectiveness of strategies to mitigate this mechanism of action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c03289 | DOI Listing |
Signal Transduct Target Ther
January 2025
The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR).
View Article and Find Full Text PDFIn Vivo
December 2024
College of Biology, Hunan University, Changsha, P.R. China;
Background/aim: Silicosis, the most severe type of occupational pneumoconiosis, leads to diffuse pulmonary fibrosis without specific therapy. Ferroptosis is triggered by reactive oxygen species (ROS) and Fe overload-induced lipid peroxidation, which is involved in the progression of pulmonary fibrosis. As an important coenzyme in the process of aerobic respiration, Coenzyme Q10 (CoQ10) can enhance mitochondrial function and energy supply and reduce malondialdehyde (MDA) to limit the risk of fibrosis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
Ferroptosis, a unique form of iron-dependent cell death triggered by lipid peroxidation accumulation, holds great promise for cancer therapy. Despite the crucial role of GPX4 in regulating ferroptosis, our understanding of GPX4 protein regulation remains limited. Through FACS-based genome-wide CRISPR screening, we identified MALT1 as a regulator of GPX4 protein.
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Emergency and Trauma Center, Nanchang First Hospital, Nanchang, Jiangxi, China.
Introduction: Depression is a prevalent and significant psychological consequence of traumatic brain injury (TBI). Ferroptosis, an iron-dependent form of regulated cell death, exacerbates the neurological damage associated with TBI. This study investigates whether nicorandil, a potassium channel opener with nitrate-like properties known for its antioxidative and neuroprotective effects, can mitigate depression-like behaviors following TBI by modulating ferroptosis.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Orthopedic Center, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.
As a mechanism of cell death, ferroptosis has gained popularity since 2012. The process is distinguished by iron toxicity and phospholipid accumulation, in contrast to autophagy, apoptosis, and other cell death mechanisms. It is implicated in the advancement of multiple diseases across the body.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!