Electrical stimulation is an important adjuvant therapy for spinal surgery, but whether receiving electrical stimulation can improve the fusion rate after spinal surgery is still controversial. The purpose of this study was to analyse and evaluate the effect of electrical stimulation on the fusion rate after spinal surgery. We systematically searched for related articles published in the PubMed, Embase and Cochrane Library databases on or before September 30, 2023. The odds ratio (OR) with 95% confidence interval (CI) and the fusion rates of the experimental group and the control group were calculated by a random-effects meta-analysis model. The analysis showed that receiving electrical stimulation significantly increased the probability of successful spinal fusion (OR 2.66 [95% CI 1.79-3.97]), and the average fusion rate of the electrical stimulation group (86.8%) was significantly greater than that of the control group (73.7%). The fusion rate in the direct current (DC) stimulation group was 2.33 times greater than that in the control group (OR 2.33 [95% CI 1.37-3.96]), and that in the pulsed electromagnetic field (PEMF) group was 2.60 times greater than that in the control group (OR 2.60 [95% CI 1.29-5.27]). Similarly, the fusion rate in the capacitive coupling (CC) electrical stimulation group was 3.44 times greater than that in the control group (OR 3.44 [95% CI 1.75-6.75]), indicating that regardless of the type of electrical stimulation, the fusion rate after spinal surgery improved to a certain extent. Electrical stimulation as an adjuvant therapy seems to improve the fusion rate after spinal surgery to a certain extent, but the specific effectiveness of this therapy needs to be further studied.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10143-024-02874-3DOI Listing

Publication Analysis

Top Keywords

electrical stimulation
36
fusion rate
32
spinal surgery
24
rate spinal
20
control group
20
greater control
16
stimulation fusion
12
stimulation group
12
times greater
12
fusion
10

Similar Publications

Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect.

View Article and Find Full Text PDF

Unlabelled: Yamaguchi A, Kanazawa Y, Hirano S, Aoyagi Y. A Case with Left Hemiplegia after Cerebral Infarction with Improved Walking Ability Through Robot-assisted Gait Training Combined with Neuromuscular Electrical Stimulation for Foot Drop. Jpn J Compr Rehabil Sci 2024; 15: 88-93.

View Article and Find Full Text PDF

Background: High-frequency, high-intensity transcutaneous electrical nerve stimulation (HFHI TENS, i.e. 80 Hz and 40-60 mA) is an effective, fast-acting pain relief modality after elective surgery, offering pain relief within 5 min.

View Article and Find Full Text PDF

To compare the effects of home-based rehabilitation and occlusal splints or centre-based rehabilitation in patients with temporomandibular joint disorders (TMD). A systematic review and meta-analysis. PubMed, Embase, Cochrane Library, Web of Science and ClinicalTrials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!