Sepsis is generally triggered by a dysfunctional host response to infection, and it can result in life-threatening organ dysfunction. (AO) exhibits regulatory functions in some diseases. However, whether AO extract (AOE) plays a promoting role in sepsis--triggered myocardial injury is unclear. This study was aimed at investigating the regulatory effects of AOE on myocardial ferroptosis and inflammation in sepsis, and the regulation effects on the lncRNA MIAT/TRAF6/NF-κB axis. Lipopolysaccharide (LPS) was used to treat mice for establishing an in vivo sepsis model. The pathological changes in heart tissues were observed through hematoxylin-eosin (HE) staining. The levels of CK-MB, cTnl, MDA, SOD, IL-1β, IL-18, IL-6, and TNF-α in serum were detected through enzyme-linked immunosorbent assay (ELISA). The level of Fe was assessed, and the protein expressions (ACSL4, GPX4, TRAF6, p-P65, and P65) were examined through western blot. The expressions of lncRNA MIAT and TRAF6 were measured through real-time quantitative polymerase chain reaction (RT-qPCR). Our results demonstrated that AOE treatment ameliorated sepsis-triggered myocardial damage by reducing the disordered cardiomyocytes, the destroyed sarcolemma, and the CK-MB and cTnl levels. In addition, AOE treatment inhibited sepsis-induced myocardial ferroptosis and inflammation by regulating Fe, ACSL4, GPX4, IL-1β, IL-18, IL-6, and TNF-α levels. Moreover, the improvement effect of AOE was strengthened with the increase in the dose of AOE (25, 50, 100 mg/kg). It was also revealed that AOE treatment retarded the lncRNA MIAT/TRAF6/NF-κB axis. Rescue assays manifested that overexpression of MIAT reduced the cardioprotective effect of AOE. In conclusion, AOE relieved sepsis-induced myocardial ferroptosis and inflammation by inhibiting lncRNA MIAT/TRAF6/NF-κB axis. These findings may provide a potential therapeutic drug for the treatment of sepsis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.15586/aei.v52i5.1035 | DOI Listing |
Cardiovasc Drugs Ther
January 2025
Department of Anesthesiology, Hainan Hosiptal of Chinese PLA General Hospital, No.80 Jianglin Street, Haitang District, Sanya City, Hainan Province, China.
Purpose: Myocardial ischemia/reperfusion injury (MIRI) is closely associated with ferroptosis. Dexmedetomidine (Dex) has good therapeutic effects on MIRI. This study investigates whether dexmedetomidine (Dex) regulates ferroptosis during MIRI by affecting ferroportin1 (FPN) levels and elucidates the underlying mechanisms.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
February 2025
Department of Nephropathy, Xi'an Central Hospital, Xi'an, China.
Myocardial dysfunction is a crucial determinant of the development of heart failure in salt-sensitive hypertension. Ferroptosis, a programmed iron-dependent cell death, has been increasingly recognised as an important contributor to the pathophysiology of various cardiovascular diseases. This study aims to investigate the role and underlying mechanism of ferroptosis in high-salt (HS)-induced myocardial damage.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China. Electronic address:
Background: The incidence of comorbidity between myocardial infarction (MI) and anxiety disorders is increasing. However, the biological association between them has not been fully understood.
Objective: This study aims to investigate the molecular mechanisms of comorbidity between MI and anxiety disorders and to predict their key genes and potential therapeutic drugs.
Dev Cell
December 2024
Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150081, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150080, China. Electronic address:
Advanced atherosclerosis is the pathological basis for acute cardiovascular events, with significant residual risk of recurrent clinical events despite contemporary treatment. The death of foamy macrophages is a main contributor to plaque progression, but the underlying mechanisms remain unclear. Bulk and single-cell RNA sequencing demonstrated that massive iron accumulation in advanced atherosclerosis promoted foamy macrophage ferroptosis, particularly in low expression of triggering receptor expressed on myeloid cells 2 (TREM2) foamy macrophages.
View Article and Find Full Text PDFFree Radic Res
December 2024
Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
Apelin is an endogenous ligand for the Apelin receptor and is a critical protective effector in myocardial infarction (MI). Nevertheless, these protective mechanisms are not fully understood. Ferroptosis is the major driving factor of MI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!