Imide functionalization has been widely proved to be an effective approach to enrich optoelectronic properties of polycyclic aromatic hydrocarbons (PAHs). However, appending multiple imide groups onto linear acenes is still a synthetic challenge. Herein, we demonstrate that by taking advantage of a "breaking and mending" strategy, a linear pentacene tetraimides (PeTI) was synthesized through a three-step sequence started from the naphthalene diimides (NDI). Compared with the parent pentacene, PeTI shows a deeper-lying lowest unoccupied molecular orbital (LUMO) energy level, narrower band gap and better stability. The redox behavior of PeTI was firstly evaluated by generating a stable radical anion specie with the assistance of cobaltocene (CoCp), and the structure of the electron transfer (ET) complex was confirmed by the X-ray crystallography. Moreover, due to the presence of multiple redox-active sites, we are able to show that the state-of-the-art energy storage performance of the dealkylated PeTI (designated as PeTCTI) in organic potassium ion batteries (OPIBs) as an anode. Our results shed light on the application of multiple imides functionalized linear acenes, and the reported synthetic strategy provides an effective way to get access to longer nanoribbon imides with fascinating electronic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202417362 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
The photochemistry of nitrous acid (HONO) plays a crucial role in atmospheric chemistry as it serves as a key source of hydroxyl radicals (OH) in the atmosphere; however, our comprehension of the underlying mechanism for the photochemistry of HONO especially in the presence of water is far from being complete as the transient intermediates in the photoreactions have not been observed. Herein, we report the photochemistry of microsolvated HONO by water in a cryogenic N matrix. Specifically, the 1:1 hydrogen-bonded water complex of HONO was facially prepared in the matrix through stepwise photolytic O oxidation of the water complex of imidogen (NH-HO) via the intermediacy of the elusive water complex of peroxyl isomer HNOO.
View Article and Find Full Text PDFWorld J Gastrointest Surg
January 2025
Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, China.
Background: Pancreatic cancer involving the pancreas neck and body often invades the retroperitoneal vessels, making its radical resection challenging. Multimodal treatment strategies, including neoadjuvant therapy, surgery, and postoperative adjuvant therapy, are contributing to a paradigm shift in the treatment of pancreatic cancer. This strategy is also promising in the treatment of pancreatic neck-body cancer.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China.
Electron donor-acceptor complexes are commonly employed to facilitate photoinduced radical-mediated organic reactions. However, achieving these photochemical processes with catalytic amounts of donors or acceptors can be challenging, especially when aiming to reduce catalyst loadings. Herein, we have unveiled a framework-based heterogenization approach that significantly enhances the photoredox activity of perylene diimide species in radical addition reactions with alkyl silicates by promoting faster and more efficient electron donor-acceptor complex formation.
View Article and Find Full Text PDFChemistry
January 2025
Jadavpur University, Chemistry, 188 Raja S. C. Mallick Road, 700032, Kolkata, INDIA.
Two π-radical complexes containing bisazo-aromatic-centered radical anion (1•-) were synthesized through in-situ electron transfer from metal-to-ligand using [IrI] and 2-(2-Pyridylazo)azobenzene (1) in inert hydrocarbon solvent. These are characterized as diradical [IrIII(1•-)2]+[2]+ and monoradical [IrIII(1•-)Cl2(PPh3)] 3. In contrast, a rare metal-mediated hydrolytic cleavage of the C(sp2)-N bond occurred in protic solvent resulting in quaternary radical complex [IrIII(1•-)(1')(PPh3)]+(4)+.
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
Department of Food Process Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203 India.
Unlabelled: Catechin hydrate (CH) is a kind of polyphenol present in many plantsincluding green tea, fruits, red wine and cocoa with very good antioxidant effect. The formulation of CH nanoemulsion increased the bioavailability and stability of catechin, allowing for easier food incorporation and faster absorption by the body. The major goal of the current study was to create a nanoemulsion as a reliable delivery mechanism for catechin hydrate and its incorporation into yogurt to increase its antioxidant activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!