Introduction: Pancreatic cancer (PC) remains a challenging malignancy, and adjuvant chemotherapy is critical in improving patient survival post-surgery. However, the intrinsic heterogeneity of PC necessitates personalized treatment strategies, highlighting the need for reliable preclinical models.

Objectives: This study aimed to develop novel patient-derived preclinical PC models using three-dimensional bioprinting (3DP) technology.

Methods: Patient-derived PC models were established using 3DP technology. Genomic and histological analyses were performed to characterize these models and compare them with corresponding patient tissues. Chemotherapeutic drug sensitivity tests were conducted on the PC 3DP models, and correlations with clinical outcomes were analyzed.

Results: The study successfully established PC 3DP models with a modeling success rate of 86.96%. These models preserved genomic and histological features consistent with patient tissues. Drug sensitivity testing revealed significant heterogeneity among PC 3DP models, mirroring clinical variability, and potential correlations with clinical outcomes.

Conclusion: The PC 3DP models demonstrated their utility as reliable preclinical tools, retaining key genomic and histological characteristics. Importantly, drug sensitivity profiles in these models showed potential correlations with clinical outcomes, indicating their promise in customizing treatment strategies and predicting patient prognoses. Further validation with larger patient cohorts is warranted to confirm their potential clinical utility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jare.2024.09.011DOI Listing

Publication Analysis

Top Keywords

3dp models
16
genomic histological
12
drug sensitivity
12
correlations clinical
12
models
10
pancreatic cancer
8
treatment strategies
8
reliable preclinical
8
established 3dp
8
patient tissues
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!