The application of biochar in degraded farmland improves soil productivity while achieving the recycling of agricultural waste. The collapse of the physical structure of coastal saline soils will greatly reduce the carbon sequestration potential of biochar. Phosphorus- and magnesium-modified biochar greatly improve the stability of biochar, which endows them with the potential to greatly improve the organic carbon pool of coastal saline soil. However, changes in the properties of modified biochar increase the uncertainty of microbial driven CO and NO release by affecting soil chemistry properties. In this study, through laboratory soil microcosmic experiment, we investigated the effects of magnesium-modified biochar (BCMg) and phosphorus-modified biochar (BCP) on CO and NO releases from coastal saline soils, and further uncovered their potential mechanisms. Compared with unapplied biochar (CK) and unmodified biochar (BC) treatment, BCMg reduced both the releases of CO and NO, and BCP decreased NO release but enhanced CO release. pH is the medium through which BCMg affects the release of CO and NO. Specifically, BCMg increased soil pH above 8.5, which reduced the metabolic activity of the microbial community, and the abundance of bacteria directly or indirectly involved in NO production, thereby decreasing the releases of CO and NO. The amendment of BCP changed soil elemental stoichiometry causing microbial N-limitation. Increasing CO release and decreasing NO release were strategies for microorganisms to cope with N-limitation. These findings suggested that BCMg is superior to BCP in mitigating greenhouse gas emissions, providing a basis for the application of modified biochar to improve the carbon pool and reduce greenhouse gas emissions of coastal saline soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.176283 | DOI Listing |
Saline-tolerant medicinal plants possess novel chemical constituents with high bioactivity because of their unique secondary metabolic pathways. an aquatic plant found in the coastal wetlands of the Yellow River Delta, was collected and studied in the present work. Ten drimane-type sesquiterpenoids and four triterpenoids, including six new ones (sinenseines A-F), were isolated from a whole plant of for the first time.
View Article and Find Full Text PDFPhotosynthetica
January 2025
College of Agronomy, Shandong Agricultural University, Tai'an, 271018 Shandong, China.
This study aims to determine the changes in the photosynthetic performance of leaves at different leaf positions and their correlation and to screen out the basic tillage methods suitable for improving the yield. The decrease in soil salt content significantly improved the PSII performance index and quantum yield for electron transport of the bottom leaf group, synergistically enhanced the photosynthetic performance of summer maize leaves (especially the bottom leaf group), and enhanced the correlation between the bottom, middle (including the ear leaf), and upper leaf groups. Under subsoiling tillage conditions, the bottom leaves could produce more carbohydrates to meet the normal growth of the root system, promote the photosynthesis of the middle leaf group at the ear position, and increase the nutrient output of the upper leaf group to the female ear in the middle and later stages of maize aging.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India.
Coastal deoxygenation impacts phytoplankton communities crucial for marine productivity. The inter- and intra-annual variability in phytoplankton communities at a shallow (27 m) station over the Western Indian Shelf (CaTS site, off Goa) during deoxygenation events of the late southwest monsoon (LSWM September-October) were studied from 2020 to 2023. The water column (0-27 m depth) experienced seasonal hypoxia/anoxia at subsurface depths (0-1.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China.
Salt stress represents a significant abiotic stress factor that impedes the growth of rice. Nano-silicon has the potential to enhance rice growth and salt tolerance. In this experiment, the rice variety 9311 was employed as the test material to simulate salt stress via hydroponics, with the objective of investigating the mitigation effect of foliar application of nano-silicon on rice seedlings.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
Background: The in vitro propagation of halophytes is innovative perspective for sustainable agriculture, conservation of natural plants and essential raw materials for industry due to increasing soil salinization and decreasing freshwater availability. Sarcocornia fruticosa, a halophytic plant, may hold promise for biosaline production systems and achieve bioactive products. Understanding the salt tolerance mechanisms of halophytes through elicitors can enhance the production of secondary metabolites, such as phenolics and flavonoids, under saline environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!