Fluorene-9-bisphenol (BHPF), as an alternative to bisphenol A, is now increasingly used in plastic products. The accumulation of BHPF in the water environment has posed potential safety risks to aquatic organisms. Unfortunately, the toxicity of BHPF on the physiological metabolism of aquatic animals remains unclear, especially on the molecular mechanisms of BHPF kidney toxicity and antagonizing BHPF toxicity. Quercetin (QCT), a naturally occurring flavonoid, has been reported to mitigate the toxic effects on aquatic organisms induced by a variety of environmental contaminants. It is unclear whether QCT can be a candidate for mitigating BHPF toxicity. In this study, we investigated the protective effect of QCT on BHPF-induced apoptosis and elucidated the possible mechanism of the protective effect mediated by QCT. We treated epithelioma papulosum cyprini cells (EPCs) with 20 μM of BHPF and/or 20 μM of QCT, and the results showed that BHPF significantly increased the release of reactive oxygen species (ROS) from EPCs, decreased the expression of SIRT3, and initiated endogenous apoptosis. Molecular docking provides evidence for the interaction of QCT and SIRT3. Our intervention with Honokiol (HKL) showed that QCT or HKL treatment significantly attenuated BHPF-induced mitochondrial dysfunction and mitochondrial apoptosis (mtApoptosis) in EPCs, and activated mitophagy, restoring autophagy flux. To further investigate the specific mechanism of the protective effect of QCT, we intervened with Cyclosporin A (CsA), and our results suggest that QCT activation of SIRT3-promoted regulation of mitophagy may be a therapeutic strategy to attenuate the toxic effects of BHPF on EPCs. In conclusion, our findings suggest that BHPF induces oxidative damage and mtApoptosis in EPCs and that QCT activates mitophagy and improves autophagic flux through activation of SIRT3, thereby alleviating apoptosis mediated by mitochondrial dysfunction in EPCs. Our study provides a theoretical basis for reassessing the safety of BHPF for aquatic organisms and reveals a novel detoxification mechanism against the toxic effects of BHPF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2024.109907 | DOI Listing |
Environ Pollut
January 2025
Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, China. Electronic address:
A major alternative to bisphenol A (BPA), fluorene-9-bisphenol (BHPF) has been shown to cause multiorgan toxicity. However, its reproductive toxicity and the underlying biological mechanism remain largely unknown. Recently, changes in the gut microbiota and metablome caused by environmental contaminant exposure and their potential impact on male reproductive health have been of great concern.
View Article and Find Full Text PDFFish Shellfish Immunol
November 2024
College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China. Electronic address:
Hum Reprod Update
December 2024
School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
Background: Bisphenol A (BPA) is an endocrine disrupting chemical released from plastic materials, including food packaging and dental sealants, persisting in the environment and ubiquitously contaminating ecosystems and human populations. BPA can elicit an array of damaging health effects and, alarmingly, 'BPA-free' alternatives mirror these harmful effects. Bisphenol exposure can negatively impact female fertility, damaging both the ovary and oocytes therein.
View Article and Find Full Text PDFEnviron Int
September 2024
Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Bisphenol A (BPA) and its substitute fluorene-9-bisphenol (BHPF) are used in consumer products; however, their toxic effects on intestinal epithelium remain largely unknown. In this study, we combined intestinal organoids and single-cell RNA sequencing to investigate the impact of BPA and BHPF exposure on intestinal cell composition, differentiation, and function. Both compounds inhibited the growth of small intestinal organoids, with BHPF exhibiting a more potent inhibitory effect.
View Article and Find Full Text PDFEcotoxicol Environ Saf
October 2024
Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Ji'nan, Shandong 250012, China. Electronic address:
Past studies have observed that BHPF induces multi-organ toxicity, however, whether it induces damage to male reproductive system and the specific mechanism remains unclear. In the present study, male mice were given 0, 2, 10 or 50 mg/kg/day of BHPF by gavage for 35 days to observe its effect on reproductive organ and sperm quality. The results indicated that BHPF decreased sperm count and sperm motility in a dose-dependent manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!