Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Carbon dioxide (CO) biosynthesis is a promising alternative to traditional chemical synthesis. However, its application in engineering is hampered by poor gas mass transfer rates. Pressurization is an effective method to enhance mass transfer and increase synthesis yield, although the underlying mechanisms remain unclear. This review examines the effects of high pressure on CO biosynthesis, elucidating the mechanisms behind yield enhancement from three perspectives: microbial physiological traits, gas mass transfer and synthetic pathways. The critical role of pressurization in improving microbial activity and gas transfer efficiency is emphasized, with particular attention to maintaining pressure within microbial tolerance limits to maximize yield without compromising cell structure integrity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131445 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!