Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Nutrient overload predisposes the development of metabolic dysfunction-associated fatty liver disease (MAFLD). However, there are no specific pharmacological therapies for MAFLD. Asperuloside (ASP), an iridoid glycoside extracted from Eucommia ulmoides leaves, can alleviate obesity and MAFLD. However, the underlying mechanism and pharmacological effects of ASP on ameliorating MAFLD remain largely investigated. This study aimed to explore the effects of ASP in ameliorating MAFLD and to unravel its underlying mechanism using a high fat diet-induced MAFLD mice model.
Methods: Six-week-old C57BL/6 male mice were fed a high fat diet for 12 weeks to induce MAFLD, followed by daily ASP treatment (50 mg/kg via oral gavage) for 7 weeks. HepG2 cells were used for in vitro studies. Nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor, ML385, was employed to explore the mechanisms of ASP's action.
Results: ASP stimulated lipolysis and inhibited de novo lipogenesis, contributing to alleviating lipid deposition in obese mice livers and HepG2 cells. ASP restored ATP production and reversed the impairments of mitochondrial energetics and biogenesis in obese mice livers and HepG2 cells. ASP attenuated oxidative stress in obese mice livers and HepG2 cells, exhibiting its antioxidant value. Impressively, ASP significantly promotes Nrf2 nuclear translocation and Nrf2/ARE binding, thereby activating Nrf2/ARE pathway in obese mice livers and HepG2 cells, demonstrating its potential as a hepatic Nrf2 activator. Nrf2 inhibition abolishes the protective effects of ASP against lipid deposition, oxidative stress and mitochondrial dysfunction, emphasizing the critical role of ASP-activated hepatic Nrf2 signaling in ameliorating MAFLD.
Conclusions: This study provides the first line of evidence demonstrating the pivotal role of ASP-stimulated Nrf2 activation in alleviating MAFLD, emphasizing its potential as a hepatic Nrf2 activator targeting fatty liver diseases. These findings offer new evidence of ASP-stimulated mitochondrial metabolism and lipolysis in MAFLD, paving the way for the development of ASP as a therapeutic agent and dietary supplement to attenuate MAFLD progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2024.177003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!